
Towards the Fairness of
Traffic Policer

Danfeng Shan1, Peng Zhang1, Wanchun Jiang2, Hao Li1, Fengyuan Ren3

1Xi’an Jiaotong University, 2Central South University, 3Tsinghua University

Background

Background

Content Providers

Background

UsersContent Providers

Background

Internet Service Provider
(ISP) UsersContent Providers

Background

Internet Service Provider
(ISP) UsersContent Providers

Application Requirements

Background

Internet Service Provider
(ISP) UsersContent Providers

Throughput
Intensive

Application Requirements

Background

Internet Service Provider
(ISP) UsersContent Providers

Throughput
Intensive

Latency
Sensitive

Application Requirements

Background

Internet Service Provider
(ISP) UsersContent Providers

Throughput
Intensive

Latency
Sensitive

$50/month

$70/month

$85/month

Application Requirements Rate Plan Guarantee

Background

Internet Service Provider
(ISP) UsersContent Providers

Throughput
Intensive

Latency
Sensitive

$50/month

$70/month

$85/month

Application Requirements Rate Plan GuaranteeTraffic Policies

Background

Enforce Traffic Policies
(Throttle Traffic Rate)

Background

Enforce Traffic Policies
(Throttle Traffic Rate)

Drop packets once
reaching the limit

Traffic Policing

Background

Enforce Traffic Policies
(Throttle Traffic Rate)

Drop packets once
reaching the limit

Traffic Policing Traffic Shaping

Buffer packets after
reaching the limit

Background

Enforce Traffic Policies
(Throttle Traffic Rate)

✓ No RTT inflation
✓ Lower cost
x Higher loss rate

Drop packets once
reaching the limit

Traffic Policing Traffic Shaping

Buffer packets after
reaching the limit

Background

Enforce Traffic Policies
(Throttle Traffic Rate)

✓ No RTT inflation
✓ Lower cost
x Higher loss rate

Drop packets once
reaching the limit

Traffic Policing Traffic Shaping

Buffer packets after
reaching the limit

✓ Lower loss rate
x Require memory
x RTT inflation

Background

Enforce Traffic Policies
(Throttle Traffic Rate)

✓ No RTT inflation
✓ Lower cost
x Higher loss rate

Drop packets once
reaching the limit

Traffic Policing Traffic Shaping

Buffer packets after
reaching the limit

✓ Lower loss rate
x Require memory
x RTT inflation

Our Focus

How Traffic Policer Works

Bucket

Token

Token Bucket Algorithm

Regulator

How Traffic Policer Works

Bucket

Token
Generating Tokens
at a specified rate

Token Bucket Algorithm

Regulator

How Traffic Policer Works

Bucket

Token
Generating Tokens
at a specified rate

Token Bucket Algorithm

Regulator

Token Num >= Packet Length

?

How Traffic Policer Works

Bucket

Token
Generating Tokens
at a specified rate

Token Bucket Algorithm

Regulator

Token Num >= Packet Length
1. Remove Tokens from Bucket
2. Transmit Packet

?

How Traffic Policer Works

Bucket

Token
Generating Tokens
at a specified rate

Token Bucket Algorithm

Regulator

Token Num < Packet Length

?

How Traffic Policer Works

Bucket

Token
Generating Tokens
at a specified rate

Token Bucket Algorithm

Regulator

Token Num < Packet Length Drop Packet

?

How Traffic Policer Works

Bucket

Token
Generating Tokens
at a specified rate

Token Bucket Algorithm

Regulator

Token Num < Packet Length Drop Packet

Timer

?

How Traffic Policer Works

Bucket

Token
Generating Tokens
at a specified rate

Token Bucket Algorithm

Regulator

Token Num < Packet Length Drop Packet

Counter

Timer

?

How Traffic Policer Works

Bucket

Token
Generating Tokens
at a specified rate

Token Bucket Algorithm

Regulator

Token Num < Packet Length Drop Packet

Counter

Timer

Comparator?

Congestion Control (CC) Interaction with Traffic Policer

Traffic PolicerCongestion Control

Feedback: Only Packet Loss

Traffic

Congestion Control (CC) Interaction with Traffic Policer

Traffic PolicerCongestion Control

Feedback: Only Packet Loss

Traditional CC
(CUBIC)

Loss-sensitive

Traffic

Congestion Control (CC) Interaction with Traffic Policer

Traffic PolicerCongestion Control

Feedback: Only Packet Loss

Traditional CC
(CUBIC)

Loss-sensitive
Packet Loss Congestion Reduce Rate

Traffic

Congestion Control (CC) Interaction with Traffic Policer

Traffic PolicerCongestion Control

Feedback: Only Packet Loss

Traditional CC
(CUBIC)

Loss-sensitive

New CC
(BBR, PCC)
Loss-resilient

Packet Loss Congestion

Packet Loss Congestion

Reduce Rate

Reduce Rate

Traffic

?

Congestion Control (CC) Interaction with Traffic Policer

Traffic PolicerCongestion Control

Feedback: Only Packet Loss

Traditional CC
(CUBIC)

Loss-sensitive

New CC
(BBR, PCC)
Loss-resilient

Packet Loss Congestion

Packet Loss Congestion

Reduce Rate

Reduce Rate

Traffic

?
Traditional CC vs. new CC Unfairness

The Unfairness Problem

0 20 40 60 80
Time (s)

0

2

4

6

8

10
G
oo

dp
ut

(M
bp

s)

BBR

CUBIC

1 CUBIC vs. 1 BBR

BBR occupies 90.6% bandwidth
when competing with CUBIC

The Unfairness Problem

1 CUBIC vs. 1 Copa

Copa occupies 99.8% bandwidth

0 20 40 60 80
Time (s)

0

2

4

6

8

10

G
oo

dp
ut

(M
bp

s)

Copa

CUBIC

1 CUBIC vs. 1 PCC Vivace

PCC Vivace occupies 93.8% bandwidth

0 20 40 60 80
Time (s)

0

2

4

6

8

10

G
oo

dp
ut

(M
bp

s)

Vivace

CUBIC

More in Paper: How new CC occupies the majority of bandwidth

How to Tackle the Unfairness Problem?

How to Tackle the Unfairness Problem?

Improve Congestion Control

How to Tackle the Unfairness Problem?

Improve Congestion Control

Not Practicable:
Content Providers want higher bandwidth

How to Tackle the Unfairness Problem?

Improve Congestion Control Use Traffic Shaping

Not Practicable:
Content Providers want higher bandwidth

How to Tackle the Unfairness Problem?

Improve Congestion Control Use Traffic Shaping

Inflate RTT
Increase Overhead

Not Practicable:
Content Providers want higher bandwidth

How to Tackle the Unfairness Problem?

Improve Congestion Control Use Traffic Shaping

Inflate RTT
Increase Overhead

Not Practicable:
Content Providers want higher bandwidth

FairPolicer: Enforce Fairness in the Policer

Our Approach

Design of FairPolicer

Observation
Bandwidth is allocated in the unit of Tokens

Design of FairPolicer

Observation
Bandwidth is allocated in the unit of Tokens

Goal
Fairly allocate tokens to flows

Design of FairPolicer

Observation
Bandwidth is allocated in the unit of Tokens

Goal
Fairly allocate tokens to flows

Basic Idea
Per-flow Token Buckets

Design of FairPolicer

Observation
Bandwidth is allocated in the unit of Tokens

Goal
Fairly allocate tokens to flows

Basic Idea
Per-flow Token Buckets

Token bucket is a very simple structure
(Counter)

Design of FairPolicer

Basic Idea

Regulator

Design of FairPolicer

Generating Tokens

Basic Idea

Regulator

Design of FairPolicer

Round-Robin Allocating Tokens

Generating Tokens

Basic Idea

Regulator

Design of FairPolicer

Per-flow Token Bucket

Round-Robin Allocating Tokens

Generating Tokens

Basic Idea

Regulator

Design of FairPolicer

Per-flow Token Bucket

Round-Robin Allocating Tokens

Generating Tokens

Classifying Packets

Basic Idea

Regulator

Design of FairPolicer

Per-flow Token Bucket

Round-Robin Allocating Tokens

Generating Tokens

Classifying Packets

Basic Idea

Regulator

Design of FairPolicer
Challenges #1: Flows Come and Go

Per-flow Token Bucket

Round-Robin Allocating Tokens

Generating Tokens

Classifying Packets

Flow becomes inactive

Design of FairPolicer
Challenges #1: Flows Come and Go

Per-flow Token Bucket

Round-Robin Allocating Tokens

Generating Tokens

Classifying Packets

Flow becomes inactive

Full of tokens in the bucket

Design of FairPolicer
Challenges #1: Flows Come and Go

Per-flow Token Bucket

Round-Robin Allocating Tokens

Generating Tokens

Classifying Packets

Flow becomes inactive

Full of tokens in the bucket

Waste of tokens

Design of FairPolicer
Challenges #1: Flows Come and Go

Per-flow Token Bucket

Round-Robin Allocating Tokens

Generating Tokens

Classifying Packets

Flow becomes inactive

Full of tokens in the bucket

Waste of tokens

Waste of bandwidth!

Design of FairPolicer
Address Challenges #1

Token Bucket

Design of FairPolicer
Address Challenges #1

Token Bucket

of Available Tokens

Design of FairPolicer
Address Challenges #1

Token Bucket

of Available Tokens

Residual Bucket Space

Design of FairPolicer
Address Challenges #1

Token Bucket

of Available Tokens

Residual Bucket Space

Token Bucket Full Residual Bucket Space = 0

Residual bucket space instead of # of available tokens

Design of FairPolicer

Generating Tokens

Classifying Packets

Address Challenges #1

Design of FairPolicer

of Available Tokens

Generating Tokens

Classifying Packets

Residual Bucket Space

Put Tokens in a Global Bucket

Address Challenges #1

Design of FairPolicer

of Available Tokens

Generating Tokens

Classifying Packets

Residual Bucket Space

Put Tokens in a Global Bucket

Flow becomes inactive

Address Challenges #1

Design of FairPolicer

of Available Tokens

Generating Tokens

Classifying Packets

Residual Bucket Space

Put Tokens in a Global Bucket

Flow becomes inactive

Residual Bucket Space = 0

Address Challenges #1

Design of FairPolicer

of Available Tokens

Generating Tokens

Classifying Packets

Residual Bucket Space

Put Tokens in a Global Bucket

Flow becomes inactive

Residual Bucket Space = 0

Discard the Bucket

Address Challenges #1

Design of FairPolicer
Challenges #2: Maintain Per-flow Data

Per-flow Residual Bucket Space
Round-Robin Allocating Tokens

Generating Tokens

Classifying Packets

Regulator

Design of FairPolicer
Address Challenges #2: Count-min Sketch

Two-dimension Array of Counters

w

d
Packet

Design of FairPolicer
Address Challenges #2: Count-min Sketch

Two-dimension Array of Counters

Hash1()%w

Hash2()%w

Hash3()%w

Hash4()%w

w

d

d hash functions

Packet

Design of FairPolicer
Address Challenges #2: Count-min Sketch

Two-dimension Array of Counters

Hash1()%w

Hash2()%w

Hash3()%w

Hash4()%w

w

d

d hash functions

Packet

c1

c2

c3

c4

Design of FairPolicer
Address Challenges #2: Count-min Sketch

Two-dimension Array of Counters

Hash1()%w

Hash2()%w

Hash3()%w

Hash4()%w

w

d

d hash functions

Packet

Update Per-flow Data

Query Per-flow Data

c1

c2

c3

c4

Design of FairPolicer
Address Challenges #2: Count-min Sketch

Two-dimension Array of Counters

Hash1()%w

Hash2()%w

Hash3()%w

Hash4()%w

w

d

d hash functions

Packet

+2

+2

+2

+2

Update Per-flow Data Update All Counters

Query Per-flow Data

c1

c2

c3

c4

Design of FairPolicer
Address Challenges #2: Count-min Sketch

Two-dimension Array of Counters

Hash1()%w

Hash2()%w

Hash3()%w

Hash4()%w

w

d

d hash functions

Packet

+2

+2

+2

+2

Update Per-flow Data Update All Counters

Query Per-flow Data Return the Minimum

c1

c2

c3

c4

Design of FairPolicer
Address Challenges #2: Count-min Sketch

Two-dimension Array of Counters

Hash1()%w

c1

c2

c3

c4

Hash2()%w

Hash3()%w

Hash4()%w

w

d

d hash functions

Packet

Accuracy of Count-min Sketch with lots of flows?

Accuracy of Count-Min Sketch

• The estimation error is bounded

• Employing a large Count-Min Sketch is not
exorbitant

A counter is no larger than B (bucket size)
A counter only needs 𝜣(log2B) bits

E.g., 100KB bucket, 4×4096 sketch
• 2B memory for a counter (40B granularity)

• 32KB memory for the total sketch

• Commercial switching chip: MBs memory

FairPolicer: On Packet Arrival

Global Bucket

Token
Generating

Tokens

Regulator

f1

f2

f3

Push

Pop

Per-flow Residual Bucket Space

Active
Flow
List

FairPolicer: On Packet Arrival

Global Bucket

Token
Generating

Tokens

Regulator

f1

f2

f3

Push

Pop

Per-flow Residual Bucket Space

Active
Flow
List

FairPolicer: On Packet Arrival

Global Bucket

Token
Generating

Tokens

Regulator

f1

f2

f3

Push

Pop

Per-flow Residual Bucket Space

Case 1: Enough Tokens in the Bucket
(Residual Bucket Space <Threshold)

Active
Flow
List

FairPolicer: On Packet Arrival

Global Bucket

Token
Generating

Tokens

Regulator

f1

f2

f3

Push

Pop

Per-flow Residual Bucket Space

Case 1: Enough Tokens in the Bucket
(Residual Bucket Space <Threshold)

Active
Flow
List

❶ Transmit Packet

FairPolicer: On Packet Arrival

Global Bucket

Token
Generating

Tokens

Regulator

f1

f2

f3

Push

Pop

Per-flow Residual Bucket Space

Case 1: Enough Tokens in the Bucket
(Residual Bucket Space <Threshold)

Active
Flow
List

❷ Push to Active List
if Bucket is Empty

FairPolicer: On Packet Arrival

Global Bucket

Token
Generating

Tokens

Regulator

f1

f2

f3

Push

Pop

Per-flow Residual Bucket Space

Case 1: Enough Tokens in the Bucket
(Residual Bucket Space <Threshold)

Active
Flow
List

❸ Free the bucket space of the flow
(Increase Residual Bucket Space)

❷ Push to Active List
if Bucket is Empty

FairPolicer: On Packet Arrival

Global Bucket

Token
Generating

Tokens

Regulator

f1

f2

f3

Push

Pop

Per-flow Residual Bucket Space

Active
Flow
List

FairPolicer: On Packet Arrival

Global Bucket

Token
Generating

Tokens

Regulator

f1

f2

f3

Push

Pop

Per-flow Residual Bucket Space

Active
Flow
List

Case 2: Not Enough Tokens in the Bucket
(Residual Bucket Space >= Threshold)

FairPolicer: On Packet Arrival

Global Bucket

Token
Generating

Tokens

Regulator

f1

f2

f3

Push

Pop

Per-flow Residual Bucket Space

Active
Flow
List

❶ Drop Packet

Case 2: Not Enough Tokens in the Bucket
(Residual Bucket Space >= Threshold)

FairPolicer: On Token Generation

Global Bucket

Regulator

f1

f2

f3

Push

Pop
Per-flow Residual Bucket Space

Active
Flow
List

FairPolicer: On Token Generation

Global Bucket

Token
Generate
a token

Regulator

f1

f2

f3

Push

Pop
Per-flow Residual Bucket Space

Active
Flow
List

FairPolicer: On Token Generation

Global Bucket

Token
Generate
a token

Regulator

f1

f2

f3

Push

Pop
Per-flow Residual Bucket Space

Active
Flow
List

❶ Increase # of tokens

FairPolicer: On Token Generation

Global Bucket

Token
Generate
a token

Regulator

f1

f2

f3

Push

Pop
Per-flow Residual Bucket Space

Active
Flow
List

❶ Increase # of tokens

❷ Pop a flow

FairPolicer: On Token Generation

Global Bucket

Token
Generate
a token

Regulator

f1

f2

f3

Push

Pop
Per-flow Residual Bucket Space

Active
Flow
List

❶ Increase # of tokens

❷ Pop a flow
❸ Allocate the token to the flow

(decrease the residual bucket space)

FairPolicer: On Token Generation

Global Bucket

Token
Generate
a token

Regulator

f1

f2

f3

Push

Pop
Per-flow Residual Bucket Space

Active
Flow
List

❶ Increase # of tokens

❷ Pop a flow
❸ Allocate the token to the flow

(decrease the residual bucket space)

❹ Delete the flow
if flow becomes inactive

(residual bucket space == 0)

FairPolicer: On Token Generation

Global Bucket

Token
Generate
a token

Regulator

f1

f2

f3

Push

Pop
Per-flow Residual Bucket Space

Active
Flow
List

❶ Increase # of tokens

❷ Pop a flow
❸ Allocate the token to the flow

(decrease the residual bucket space)

❹ Delete the flow
if flow becomes inactive

(residual bucket space == 0)

❺ Enqueue the flow
if it is still active

(residual bucket space > 0)

Design of FairPolicer

• More details in the paper
Dynamically adjust the per-flow bucket space

Parameter settings

Evaluation — Testbed Setup

Rate Limit: 10Mbps

Senders Server-emulated Switch Receiver

CUBIC

BBR/Copa/Vivace

UDP

Evaluation — Fairness

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

2

4

6

8

10

G
oo

dp
ut

(M
bp

s)
CUBIC

BBR

Copa

PCC Vivace

UDP

Fairness and Convergence

Ensure fairness regardless of CC algorithms

Evaluation — Fairness

4 8 16 32 64 128 256 512 1024
Number of Flows

0.0

0.2

0.4

0.6

0.8
Ja

in
’s

U
nf

ai
rn

es
s

In
de

x

FairPolicer (4x1024)

FairPolicer (4x4096)

TBP

Shaper

Unfairness Index

Unfairness Index is within 0.004 with 4x4096 sketch size (32KB memory)

Better

Evaluation — Latency

Rate Limit: 10Mbps

Senders Server-emulated Switch Receiver

HTTP Traffic: 10KB page

Background Traffic
Pareto: shape=0.9, scale=0.01

Evaluation — Latency

0.01 0.1 1.0
Page Load Time (s)

0.01

0.1

0.5

0.9

0.99

0.999
C
D

F

FairPolicer

TBP

Shaper

Reduce the avg. page load time by 14.0x

Web Page Load Time

Better

Evaluation — Accuracy of Count-min Sketch

0 400 800 1200 1600 2000
Number of Flows

0

10°6

10°5

10°4

10°3

10°2

Fr
ac

ti
on

of
M

is
es

ti
m

at
ed

P
ac

ke
ts

Scale to 2K flows with a sketch size of 4x4096 (32KB memory)
Accuracy

Better

Conclusion

• Discover and validate the unfairness problem

• Propose FairPolicer that can fairly allocate
bandwidth regardless of CC algorithms

• Prototype and evaluate FairPolicer in a
testbed

Thank you!
Q&A

Source code: https://github.com/ants-xjtu/fairpolicer

