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Micro-burst Traffic

1ms average

1s average 
Avg. rate: 500Mbps

Micro-burstDuration: 4.5ms 
(micro)

Rate: 3.5Gbps 
(burst)

Hard: 
detect

Easy: 
packet dropping
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Fan-in communication
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Sender

Sender

Receiver

Fan-in 
 Communication:

Distributed Storage, MapReduce, Web Search, Memcached 
Systems, Distributed Machine Learning ……

Sender

Micro-burst

Characteristics of Micro-burst ?
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Methodology

How to observe micro-bursts?

Requirement: 
Very fine-grained (us)

Large volume of data

Where to observe micro-bursts? Pkt buffer at switches: 
aggregation behavior

Large overhead

5B data every 1us, 10min duration 

๏ Store in Switch: 3GB memory 

๏ Send to ends: 40Mbps bandwidth

Example
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Methodology 
— How to observe micro-burst

✓ No need to consume switch memory 
✓ No need to consume bandwidth 
✓ Low overhead to switch

Resource Usage

Resources ECN Switch +Qlen Monitor

Slice Flip Flops 14738 14777

LUTs 18048 19050

+8.3%

Benefits:

Latency: +8ns

NetFPGA 
Implementaion
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Experimental 
Scenarios 

Synchronized fan-in

Asynchronous fan-in

Fan-in with one background flow

Fan-in with several background flows 
congested at the same hop

Fan-in with several background flows 
congested at previous hop

w/  
background 

traffic

w/o 
background 

traffic
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Experiment Settings

12 servers: CentOS, Linux 2.6.38

4 NetFPGA cards (1Gbps): 
512KB buffer, queue length monitoring

Testbed
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Experiment Traffic

Traffic: H1-9 —> H12, 18 flows

bottleneck
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Experiment Results

Queue Length Evolution

Phase 1 Phase 2 Increasing at a constant rate

Sharply increasing for a short period
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Phase 2: Slope = 1Gbps (bottleneck capacity)

Phase 1: slope much larger than Phase 2

Why???

Slope: queue length increasing rate
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1. Switch sending rate = 1Gbps

2. Receiver ack rate: 1Gbps

3. Sender: 1 ACK —> 2 Data packet 
(slow start)

4. Total sending rate: 2Gbps

5. Qlen increasing rate: 1Gbps
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Observations 
— Synchronized fan-in

•Bottleneck capacity limits the receiving rate 
•ACK-clocking system evenly spread the packets 
•Congestion Control doubles the total sending rate

Phase 2:  
slope = 1Gbps

• Senders are sending 1st round of packets 
• Uncontrolled by self-clocking system

Phase 1:  
slope larger than 
Phase 2
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Asynchronous fan-in w/ one background flow

w/ several background flows 
congested at the same hop

w/ several background flows 
congested at previous hop
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Summary of Observations
1. Without background flows 

Slope = bottleneck capacity 

2. With one background flow, or several background 
flows congested at the same hop 

Slope < bottleneck capacity 

3. With several background flows congested at 
previous hop 

slope > bottleneck capacity 
Slope <= 2*bottleneck capacity

Slope describes the dynamic behavior of micro-bursts

Phase 2 
Behavior
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Implications

Ways to 
mitigate bursts

TCP Pacing 
at end hosts

Absorbing bursts 
at buffer

✘ fan-in: burstiness from multiple flows

✔ burstiness inside a single flow

Absorb one pkt —> another two pkt

☹
How to mitigate 
micro-bursts?

Senders slow down 
in time
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How to mitigate micro-bursts?

Switch: 
Notify senders as soon as possible

Senders: 
Slow down

How? ECN marking

Sender
Switch

Receiver
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Mitigating Micro-bursts
104KB

ECN Threshold: 32KB

Not responsive enough

Exp. settings: 9 senders —> 1 receiver

☹
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Mitigating Micro-bursts

ECN Threshold

Improving responsiveness

Reduce ECN threshold —> Throughput Loss ☹

Reaction Point
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Mitigating Micro-bursts
S-ECN: slope-based ECN marking scheme 
• Stochastically mark packets 
• The bigger the slope, the larger the marking probability

Slope
Prob: Marking Probability 
s: slope 
R: port speed

Marking Probability

Send slope to senders
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Implementing S-ECN

Probability marking

Divider

Overhead in 
hardware

Marking at a probability of prob 
—> Mark every 1/prob packets

Unmarked Unmarked Unmarked Marked

e.g., marking prob = 1/4

Random number 
generator Counter
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Implementing S-ECN

Probability marking

Divider

Overhead in 
hardware

Divider Adder and Multiplier
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Implementing S-ECN

Data path

Control path

Resource Usage

Resources ECN Switch +S-ECN

Slice Flip Flops 14738 14700

LUTs 18048 18544

+6%

NetFPGA 
Implementation



Evaluation

Protocols Compared

Protocols
End Host 
Algorithm Switch Settings

DCTCP DCTCP
Mark <—> Qlen >= K 

K = 32KB

DCTCP+S-ECN DCTCP
if Qlen < K: S-ECN 
if Qlen >= K: Mark 

K= 32KB
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104KB

47KB

Settings: 9 senders —> 1 receiver

Queue length increment reduced by over 2x
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Evaluation  
— Suppression of sharp queue increasing

S-ECN is more responsive

47KB

65.7KB

S-ECN vs. Extremely low ECN threshold
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S-ECN can fully utilize network
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Evaluation  
— Incast Performance

Better Incast Performance

Exp. settings: query for total 1MB data, buffer size: 128KB



Evaluation  
— Benchmark Traffic

Query Traffic (many-to-one): 
• One server queries all other servers for total 100KB data 
• Query arrival: Poisson 

Background Traffic (one-to-one): 
• Randomly choose sender and receiver 
• Flow arrival: Poisson 
• Flow size distribution 

From DCTCP paper
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Avg. query completion time:  
reduced by ∼12%-27%

Query Completion Time (QCT) of query traffic

99th percentile: 
reduced by ∼6%-62%

Average 99th percentile
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Evaluation  
— Benchmark Traffic

Flow Completion Time (FCT) of background traffic

Small flows: 
finish faster

Large flows:  
finish slower 

☹ Future Work

(0,100KB]: Average (0,100KB]: 99th percentile (10MB, +∞)



Conclusion

• Observing and Analyzing dynamic behaviors of micro-
burst 

The self-clocking system, congestion control, and bottleneck link 
capacity jointly dominate the evolution of micro-burst 

Dynamic behaviors of micro-burst can be described by slope of queue 
length evolution 

Implications: Conventional burst mitigation approaches are ineffective 

• S-ECN marking Scheme 
Probability marking scheme based-on slope 

suppressed sharp queue length increasing by 2x



Thank you!


