

Micro-burst in Data Centers: Observations, Analysis, and Mitigations

Danfeng Shan, Fengyuan Ren, Peng Cheng, Ran Shu, and Chuanxiong Guo

Research

ByteDance

Microsoft[®]

- Background
- Methodology of Observing Micro-bursts
- Observing and Analyzing Micro-bursts
- Mitigating Micro-bursts
- Conclusion

Hard:

Time (milliseconds)

Hard: detect

Fan-in Distributed Storage, MapReduce, Web Search, Memcached Systems, Distributed Machine Learning

Fan-in Distributed Storage, MapReduce, Web Search, Memcached Systems, Distributed Machine Learning

Fan-in Distributed Storage, MapReduce, Web Search, Memcached Systems, Distributed Machine Learning

Fan-in Distributed Storage, MapReduce, Web Search, Memcached Systems, Distributed Machine Learning

Characteristics of Micro-burst?

- Background
- Methodology of Observing Micro-bursts
- Observing and Analyzing Micro-bursts
- Mitigating Micro-bursts
- Conclusion

Where to observe micro-bursts?

How to observe micro-bursts?

Where to observe micro-bursts?

Pkt buffer at switches: aggregation behavior

How to observe micro-bursts?

Where to observe micro-bursts?

Pkt buffer at switches: aggregation behavior

How to observe micro-bursts?

Requirement: Very fine-grained (us)

Pkt buffer at switches: aggregation behavior

How to observe micro-bursts?

How to observe micro-bursts?

Benefits:

No need to consume switch memory
No need to consume bandwidth
Low overhead to switch

Benefits:

No need to consume switch memory
No need to consume bandwidth
Low overhead to switch

NetFPGA Implementaion

- Background
- Methodology of Observing Micro-bursts
- Observing and Analyzing Micro-bursts
- Mitigating Micro-bursts
- Conclusion

Experiment Settings

Testbed

Experiment Settings

12 servers: CentOS, Linux 2.6.38

Testbed

Experiment Settings

4 NetFPGA cards (1Gbps): 512KB buffer, queue length monitoring

12 servers: CentOS, Linux 2.6.38

Testbed

- Synchronized fan-in

Traffic: H1-9 -> H12, 18 flows

Experiment Traffic

- Synchronized fan-in

Traffic: H1-9 -> H12, 18 flows

Experiment Traffic

- Synchronized fan-in

- Synchronized fan-in

- Synchronized fan-in

- Synchronized fan-in

- Synchronized fan-in

Slope: queue length increasing rate

- Synchronized fan-in

Slope: queue length increasing rate

- Synchronized fan-in

3. Sender: 1 ACK -> 2 Data packet

- Synchronized fan-in

3. Sender: 1 ACK -> 2 Data packet

4. Total sending rate: 2Gbps

- Synchronized fan-in

Phase 2: slope = 1Gbps

- Bottleneck capacity limits the receiving rate
- ACK-clocking system evenly spread the packets
- Congestion Control doubles the total sending rate

- Synchronized fan-in

Phase 2: slope = 1Gbps

- Bottleneck capacity limits the receiving rate
- ACK-clocking system evenly spread the packets
- Congestion Control doubles the total sending rate

Phase 1: slope larger than Phase 2

- Senders are sending 1st round of packets
- Uncontrolled by self-clocking system

Summary of Observations

- 1. Without background flows
 - Slope = bottleneck capacity

Phase 2 Behavior

- 2. With one background flow, or several background flows congested at the same hop
 - Slope < bottleneck capacity
- 3. With several background flows congested at previous hop
 - **slope** > bottleneck capacity
 - Slope <= 2*bottleneck capacity

Summary of Observations

- 1. Without background flows
 - Slope = bottleneck capacity

Phase 2 Behavior

- 2. With one background flow, or several background flows congested at the same hop
 - Slope < bottleneck capacity
- 3. With several background flows congested at previous hop
 - **slope** > bottleneck capacity
 - Slope <= 2*bottleneck capacity

<u>Slope</u> describes the dynamic behavior of micro-bursts

Ways to mitigate bursts

burstiness inside a single flow

- burstiness inside a single flow
- **X** fan-in: burstiness from multiple flows

How to mitigate micro-bursts?

Outline

- Background
- Methodology of Observing Micro-bursts
- Observing and Analyzing Micro-bursts
- Mitigating Micro-bursts
- Conclusion

Mitigating Micro-bursts

How to mitigate micro-bursts?

Mitigating Micro-bursts

How to mitigate micro-bursts?

Notify senders as soon as possible
How to mitigate micro-bursts?

How to mitigate micro-bursts?

Not responsive enough

Reduce ECN threshold —> Throughput Loss

S-ECN: slope-based ECN marking scheme

- Stochastically mark packets
- The bigger the slope, the larger the marking probability

S-ECN: slope-based ECN marking scheme

- Stochastically mark packets
- The bigger the slope, the larger the marking probability

Send slope to senders

S-ECN: slope-based ECN marking scheme

- Stochastically mark packets
- The bigger the slope, the larger the marking probability

Send slope to senders

Resource Usage

NetFPGA Implementation	Resources	ECN Switch	+S-ECN
	Slice Flip Flops	14738	14700
	LUTs	18048	18544

Resource Usage

NetFPGAResourcesECN_Switch+S-ECNImplementationLUTs1473814700LUTs1804818544+6%

Evaluation

Protocols Compared

Protocols	End Host Algorithm	Switch Settings
DCTCP	DCTCP	Mark <—> Qlen >= K K = 32KB
DCTCP+S-ECN	DCTCP	if Qlen < K: S-ECN if Qlen >= K: Mark K= 32KB

Evaluation — Suppression of sharp queue increasing

Evaluation — Suppression of sharp queue increasing

Evaluation Suppression of sharp queue increasing

Queue length increment reduced by over 2x

Evaluation — Suppression of sharp queue increasing

Evaluation — Suppression of sharp queue increasing

- Network Utilization

- Network Utilization

S-ECN can fully utilize network

Evaluation - Incast Performance

Evaluation - Incast Performance

- Benchmark Traffic

From DCTCP paper

Query Traffic (many-to-one):

- One server queries all other servers for total 100KB data
- Query arrival: Poisson

Background Traffic (one-to-one):

- Randomly choose sender and receiver
- Flow arrival: Poisson
- Flow size distribution

Evaluation Benchmark Traffic

Evaluation - Benchmark Traffic

Avg. query completion time: reduced by ~12%-27%

Evaluation Benchmark Traffic

Avg. query completion time: reduced by ~12%-27% 99th percentile: reduced by ~6%-62%

Evaluation Benchmark Traffic

Evaluation Benchmark Traffic

Flow Completion Time (FCT) of background traffic

Small flows: finish faster

Evaluation — Benchmark Traffic

Flow Completion Time (FCT) of background traffic

Evaluation — Benchmark Traffic

Flow Completion Time (FCT) of background traffic

Conclusion

- Observing and Analyzing dynamic behaviors of microburst
 - The <u>self-clocking system</u>, <u>congestion control</u>, and <u>bottleneck link</u> <u>capacity</u> jointly dominate the evolution of micro-burst
 - Dynamic behaviors of micro-burst can be described by <u>slope of queue</u> <u>length evolution</u>
 - Implications: Conventional burst mitigation approaches are ineffective

• S-ECN marking Scheme

- Probability marking scheme based-on slope
- $\circ~$ suppressed sharp queue length increasing by 2x

Thank you!

