
Micro-burst in Data Centers:
Observations, Analysis, and Mitigations

Danfeng Shan, Fengyuan Ren, Peng Cheng, Ran Shu, and
Chuanxiong Guo

IEEE ICNP 2018

Outline

• Background

• Methodology of Observing Micro-bursts

• Observing and Analyzing Micro-bursts

• Mitigating Micro-bursts

• Conclusion

Micro-burst Traffic

1ms average

1s average
Avg. rate: 500Mbps

Micro-burst Traffic

1ms average

1s average
Avg. rate: 500Mbps

Micro-burst Traffic

1ms average

1s average
Avg. rate: 500Mbps

Micro-burst

Micro-burst Traffic

1ms average

1s average
Avg. rate: 500Mbps

Micro-burstDuration: 4.5ms
(micro)

Micro-burst Traffic

1ms average

1s average
Avg. rate: 500Mbps

Micro-burstDuration: 4.5ms
(micro)

Hard:
detect

Micro-burst Traffic

1ms average

1s average
Avg. rate: 500Mbps

Micro-burstDuration: 4.5ms
(micro)

Rate: 3.5Gbps
(burst)

Hard:
detect

Micro-burst Traffic

1ms average

1s average
Avg. rate: 500Mbps

Micro-burstDuration: 4.5ms
(micro)

Rate: 3.5Gbps
(burst)

Hard:
detect

Easy:
packet dropping

Micro-burst Traffic

Batching Schemes (e.g., TSO)

Fan-in communication

Causes

Micro-burst Traffic

Batching Schemes (e.g., TSO)

Fan-in communication

Causes

Focus of this work

Micro-burst Traffic

Sender

Sender

Receiver

Fan-in
 Communication:

Distributed Storage, MapReduce, Web Search, Memcached
Systems, Distributed Machine Learning ……

Sender
Queue

Micro-burst Traffic

Sender

Sender

Receiver

Fan-in
 Communication:

Distributed Storage, MapReduce, Web Search, Memcached
Systems, Distributed Machine Learning ……

Sender
Queue

Micro-burst Traffic

Sender

Sender

Receiver

Fan-in
 Communication:

Distributed Storage, MapReduce, Web Search, Memcached
Systems, Distributed Machine Learning ……

Sender
Queue

Micro-burst Traffic

Sender

Sender

Receiver

Fan-in
 Communication:

Distributed Storage, MapReduce, Web Search, Memcached
Systems, Distributed Machine Learning ……

Sender

Micro-burst

Queue

Micro-burst Traffic

Sender

Sender

Receiver

Fan-in
 Communication:

Distributed Storage, MapReduce, Web Search, Memcached
Systems, Distributed Machine Learning ……

Sender

Micro-burst

Characteristics of Micro-burst ?

Queue

Outline

• Background

• Methodology of Observing Micro-bursts

• Observing and Analyzing Micro-bursts

• Mitigating Micro-bursts

• Conclusion

Methodology

How to observe micro-bursts?

Where to observe micro-bursts?

Methodology

How to observe micro-bursts?

Where to observe micro-bursts? Pkt buffer at switches:
aggregation behavior

Methodology

How to observe micro-bursts?

Requirement:
Very fine-grained (us)

Where to observe micro-bursts? Pkt buffer at switches:
aggregation behavior

Methodology

How to observe micro-bursts?

Requirement:
Very fine-grained (us)

Where to observe micro-bursts? Pkt buffer at switches:
aggregation behavior

Large overhead

Methodology

How to observe micro-bursts?

Requirement:
Very fine-grained (us)

Large volume of data

Where to observe micro-bursts? Pkt buffer at switches:
aggregation behavior

Large overhead

Methodology

How to observe micro-bursts?

Requirement:
Very fine-grained (us)

Large volume of data

Where to observe micro-bursts? Pkt buffer at switches:
aggregation behavior

Large overhead

5B data every 1us, 10min duration

๏ Store in Switch: 3GB memory

๏ Send to ends: 40Mbps bandwidth

Example

Methodology
— How to observe micro-burst

Sender Switch Receiver

Methodology
— How to observe micro-burst

Packet

Sender Switch Receiver

Methodology
— How to observe micro-burst

Sender Switch Receiver

Methodology
— How to observe micro-burst

Timestamp + Queue Length

Sender Switch Receiver

Methodology
— How to observe micro-burst

Sender Switch Receiver

Methodology
— How to observe micro-burst

Sender Switch Receiver

Methodology
— How to observe micro-burst

Store to disk

Sender Switch Receiver

Methodology
— How to observe micro-burst

✓ No need to consume switch memory
✓ No need to consume bandwidth
✓ Low overhead to switch

Benefits:

Methodology
— How to observe micro-burst

✓ No need to consume switch memory
✓ No need to consume bandwidth
✓ Low overhead to switch

Benefits:

NetFPGA
Implementaion

Methodology
— How to observe micro-burst

✓ No need to consume switch memory
✓ No need to consume bandwidth
✓ Low overhead to switch

Benefits:

Latency: +8ns

NetFPGA
Implementaion

Methodology
— How to observe micro-burst

✓ No need to consume switch memory
✓ No need to consume bandwidth
✓ Low overhead to switch

Resource Usage

Resources ECN Switch +Qlen Monitor

Slice Flip Flops 14738 14777

LUTs 18048 19050

Benefits:

Latency: +8ns

NetFPGA
Implementaion

Methodology
— How to observe micro-burst

✓ No need to consume switch memory
✓ No need to consume bandwidth
✓ Low overhead to switch

Resource Usage

Resources ECN Switch +Qlen Monitor

Slice Flip Flops 14738 14777

LUTs 18048 19050

+8.3%

Benefits:

Latency: +8ns

NetFPGA
Implementaion

Methodology

Experimental
Scenarios

Synchronized fan-in

Asynchronous fan-in

Fan-in with one background flow

Fan-in with several background flows
congested at the same hop

Fan-in with several background flows
congested at previous hop

w/
background

traffic

w/o
background

traffic

Outline

• Background

• Methodology of Observing Micro-bursts

• Observing and Analyzing Micro-bursts

• Mitigating Micro-bursts

• Conclusion

Experiment Settings

Testbed

Experiment Settings

12 servers: CentOS, Linux 2.6.38

Testbed

Experiment Settings

12 servers: CentOS, Linux 2.6.38

4 NetFPGA cards (1Gbps):
512KB buffer, queue length monitoring

Testbed

Observations
— Synchronized fan-in

Experiment Traffic

Traffic: H1-9 —> H12, 18 flows

Observations
— Synchronized fan-in

Experiment Traffic

Traffic: H1-9 —> H12, 18 flows

bottleneck

Observations
— Synchronized fan-in

Experiment Results

Queue Length Evolution

Observations
— Synchronized fan-in

Experiment Results

Queue Length Evolution

Phase 1 Phase 2

Observations
— Synchronized fan-in

Experiment Results

Queue Length Evolution

Phase 1 Phase 2

Sharply increasing for a short period

Observations
— Synchronized fan-in

Experiment Results

Queue Length Evolution

Phase 1 Phase 2 Increasing at a constant rate

Sharply increasing for a short period

Observations
— Synchronized fan-in

Slope: queue length increasing rate

Observations
— Synchronized fan-in

Phase 1: slope much larger than Phase 2

Slope: queue length increasing rate

Observations
— Synchronized fan-in

Phase 2: Slope = 1Gbps (bottleneck capacity)

Phase 1: slope much larger than Phase 2

Slope: queue length increasing rate

Observations
— Synchronized fan-in

Phase 2: Slope = 1Gbps (bottleneck capacity)

Phase 1: slope much larger than Phase 2

Why???

Slope: queue length increasing rate

Observations
— Synchronized fan-in

Observations
— Synchronized fan-in

1. Switch sending rate = 1Gbps

Observations
— Synchronized fan-in

1. Switch sending rate = 1Gbps

2. Receiver ack rate: 1Gbps

Observations
— Synchronized fan-in

1. Switch sending rate = 1Gbps

2. Receiver ack rate: 1Gbps

3. Sender: 1 ACK —> 2 Data packet
(slow start)

Observations
— Synchronized fan-in

1. Switch sending rate = 1Gbps

2. Receiver ack rate: 1Gbps

3. Sender: 1 ACK —> 2 Data packet
(slow start)

4. Total sending rate: 2Gbps

Observations
— Synchronized fan-in

1. Switch sending rate = 1Gbps

2. Receiver ack rate: 1Gbps

3. Sender: 1 ACK —> 2 Data packet
(slow start)

4. Total sending rate: 2Gbps

5. Qlen increasing rate: 1Gbps

Observations
— Synchronized fan-in

•Bottleneck capacity limits the receiving rate
•ACK-clocking system evenly spread the packets
•Congestion Control doubles the total sending rate

Phase 2:
slope = 1Gbps

Observations
— Synchronized fan-in

•Bottleneck capacity limits the receiving rate
•ACK-clocking system evenly spread the packets
•Congestion Control doubles the total sending rate

Phase 2:
slope = 1Gbps

• Senders are sending 1st round of packets
• Uncontrolled by self-clocking system

Phase 1:
slope larger than
Phase 2

Observations

Asynchronous fan-in w/ one background flow

w/ several background flows
congested at the same hop

w/ several background flows
congested at previous hop

Summary of Observations
1. Without background flows

Slope = bottleneck capacity

2. With one background flow, or several background
flows congested at the same hop

Slope < bottleneck capacity

3. With several background flows congested at
previous hop

slope > bottleneck capacity
Slope <= 2*bottleneck capacity

Phase 2
Behavior

Summary of Observations
1. Without background flows

Slope = bottleneck capacity

2. With one background flow, or several background
flows congested at the same hop

Slope < bottleneck capacity

3. With several background flows congested at
previous hop

slope > bottleneck capacity
Slope <= 2*bottleneck capacity

Slope describes the dynamic behavior of micro-bursts

Phase 2
Behavior

Implications

Ways to
mitigate bursts

Implications

Ways to
mitigate bursts

TCP Pacing
at end hosts

Absorbing bursts
at buffer

Implications

Ways to
mitigate bursts

TCP Pacing
at end hosts

Absorbing bursts
at buffer

✔ burstiness inside a single flow

Implications

Ways to
mitigate bursts

TCP Pacing
at end hosts

Absorbing bursts
at buffer

✘ fan-in: burstiness from multiple flows

✔ burstiness inside a single flow

Implications

Ways to
mitigate bursts

TCP Pacing
at end hosts

Absorbing bursts
at buffer

✘ fan-in: burstiness from multiple flows

✔ burstiness inside a single flow

Implications

Ways to
mitigate bursts

TCP Pacing
at end hosts

Absorbing bursts
at buffer

✘ fan-in: burstiness from multiple flows

✔ burstiness inside a single flow

Absorb one pkt —> another two pkt

☹

Implications

Ways to
mitigate bursts

TCP Pacing
at end hosts

Absorbing bursts
at buffer

✘ fan-in: burstiness from multiple flows

✔ burstiness inside a single flow

Absorb one pkt —> another two pkt

☹
How to mitigate
micro-bursts?

Implications

Ways to
mitigate bursts

TCP Pacing
at end hosts

Absorbing bursts
at buffer

✘ fan-in: burstiness from multiple flows

✔ burstiness inside a single flow

Absorb one pkt —> another two pkt

☹
How to mitigate
micro-bursts?

Senders slow down
in time

Outline

• Background

• Methodology of Observing Micro-bursts

• Observing and Analyzing Micro-bursts

• Mitigating Micro-bursts

• Conclusion

Mitigating Micro-bursts

How to mitigate micro-bursts?

Sender
Switch

Receiver

Mitigating Micro-bursts

How to mitigate micro-bursts?

Switch:
Notify senders as soon as possible

Sender
Switch

Receiver

Mitigating Micro-bursts

How to mitigate micro-bursts?

Switch:
Notify senders as soon as possible

Senders:
Slow down

Sender
Switch

Receiver

Mitigating Micro-bursts

How to mitigate micro-bursts?

Switch:
Notify senders as soon as possible

Senders:
Slow down

How? ECN marking

Sender
Switch

Receiver

Mitigating Micro-bursts
Exp. settings: 9 senders —> 1 receiver

Mitigating Micro-bursts

ECN Threshold: 32KB

Exp. settings: 9 senders —> 1 receiver

Mitigating Micro-bursts
104KB

ECN Threshold: 32KB

Exp. settings: 9 senders —> 1 receiver

Mitigating Micro-bursts
104KB

ECN Threshold: 32KB

Not responsive enough

Exp. settings: 9 senders —> 1 receiver

☹

Mitigating Micro-bursts

ECN Threshold

Improving responsiveness

Mitigating Micro-bursts

ECN Threshold

Improving responsiveness

Reaction Point

Mitigating Micro-bursts

ECN Threshold

Improving responsiveness

Reaction Point

Mitigating Micro-bursts

ECN Threshold

Improving responsiveness

Reduce ECN threshold —> Throughput Loss ☹

Reaction Point

Mitigating Micro-bursts
S-ECN: slope-based ECN marking scheme
• Stochastically mark packets
• The bigger the slope, the larger the marking probability

Mitigating Micro-bursts
S-ECN: slope-based ECN marking scheme
• Stochastically mark packets
• The bigger the slope, the larger the marking probability

Send slope to senders

Mitigating Micro-bursts
S-ECN: slope-based ECN marking scheme
• Stochastically mark packets
• The bigger the slope, the larger the marking probability

Slope
Prob: Marking Probability
s: slope
R: port speed

Marking Probability

Send slope to senders

Implementing S-ECN

Probability marking

Divider

Overhead in
hardware

Implementing S-ECN

Probability marking

Divider

Overhead in
hardware

Marking at a probability of prob
—> Mark every 1/prob packets

Implementing S-ECN

Probability marking

Divider

Overhead in
hardware

Marking at a probability of prob
—> Mark every 1/prob packets

Unmarked Unmarked Unmarked Marked

e.g., marking prob = 1/4

Implementing S-ECN

Probability marking

Divider

Overhead in
hardware

Marking at a probability of prob
—> Mark every 1/prob packets

Unmarked Unmarked Unmarked Marked

e.g., marking prob = 1/4

Random number
generator Counter

Implementing S-ECN

Probability marking

Divider

Overhead in
hardware

Implementing S-ECN

Probability marking

Divider

Overhead in
hardware

Implementing S-ECN

Probability marking

Divider

Overhead in
hardware

Divider Adder and Multiplier

Implementing S-ECN

Implementing S-ECN

Data path

Control path

Implementing S-ECN

Data path

Control path

Resource Usage

Resources ECN Switch +S-ECN

Slice Flip Flops 14738 14700

LUTs 18048 18544

NetFPGA
Implementation

Implementing S-ECN

Data path

Control path

Resource Usage

Resources ECN Switch +S-ECN

Slice Flip Flops 14738 14700

LUTs 18048 18544

+6%

NetFPGA
Implementation

Evaluation

Protocols Compared

Protocols
End Host
Algorithm Switch Settings

DCTCP DCTCP
Mark <—> Qlen >= K

K = 32KB

DCTCP+S-ECN DCTCP
if Qlen < K: S-ECN
if Qlen >= K: Mark

K= 32KB

Evaluation  
— Suppression of sharp queue increasing

Settings: 9 senders —> 1 receiver

Evaluation  
— Suppression of sharp queue increasing

104KB

47KB

Settings: 9 senders —> 1 receiver

Evaluation  
— Suppression of sharp queue increasing

104KB

47KB

Settings: 9 senders —> 1 receiver

Queue length increment reduced by over 2x

Evaluation  
— Suppression of sharp queue increasing

47KB

65.7KB

S-ECN vs. Extremely low ECN threshold

Evaluation  
— Suppression of sharp queue increasing

S-ECN is more responsive

47KB

65.7KB

S-ECN vs. Extremely low ECN threshold

Evaluation  
— Network Utilization

Evaluation  
— Network Utilization

S-ECN can fully utilize network

Evaluation  
— Incast Performance

Exp. settings: query for total 1MB data, buffer size: 128KB

Evaluation  
— Incast Performance

Better Incast Performance

Exp. settings: query for total 1MB data, buffer size: 128KB

Evaluation  
— Benchmark Traffic

Query Traffic (many-to-one):
• One server queries all other servers for total 100KB data
• Query arrival: Poisson

Background Traffic (one-to-one):
• Randomly choose sender and receiver
• Flow arrival: Poisson
• Flow size distribution

From DCTCP paper

Evaluation  
— Benchmark Traffic

Query Completion Time (QCT) of query traffic
Average 99th percentile

Evaluation  
— Benchmark Traffic

Avg. query completion time:
reduced by ∼12%-27%

Query Completion Time (QCT) of query traffic
Average 99th percentile

Evaluation  
— Benchmark Traffic

Avg. query completion time:
reduced by ∼12%-27%

Query Completion Time (QCT) of query traffic

99th percentile:
reduced by ∼6%-62%

Average 99th percentile

Evaluation  
— Benchmark Traffic

Flow Completion Time (FCT) of background traffic

(0,100KB]: Average (0,100KB]: 99th percentile (10MB, +∞)

Evaluation  
— Benchmark Traffic

Flow Completion Time (FCT) of background traffic

Small flows:
finish faster

(0,100KB]: Average (0,100KB]: 99th percentile (10MB, +∞)

Evaluation  
— Benchmark Traffic

Flow Completion Time (FCT) of background traffic

Small flows:
finish faster

Large flows:
finish slower

(0,100KB]: Average (0,100KB]: 99th percentile (10MB, +∞)

Evaluation  
— Benchmark Traffic

Flow Completion Time (FCT) of background traffic

Small flows:
finish faster

Large flows:
finish slower

☹ Future Work

(0,100KB]: Average (0,100KB]: 99th percentile (10MB, +∞)

Conclusion

• Observing and Analyzing dynamic behaviors of micro-
burst

The self-clocking system, congestion control, and bottleneck link
capacity jointly dominate the evolution of micro-burst

Dynamic behaviors of micro-burst can be described by slope of queue
length evolution

Implications: Conventional burst mitigation approaches are ineffective

• S-ECN marking Scheme
Probability marking scheme based-on slope

suppressed sharp queue length increasing by 2x

Thank you!

