
Less is More:
Dynamic and Shared Headroom Allocation

in PFC-enabled Datacenter Networks
Danfeng Shan, Yuqi Liu, Tong Zhang, Yifan Liu,

Yazhe Tang, Hao Li, and Peng Zhang

Background: Lossless Network

• Lossless network is very attractive in DCN
⚬ Ultra-low latency and high throughput

Lossless Network

HPC Distributed Deep
Learning

Distributed
Storage

RDMA

Background: PFC

• Ethernet: Priority-based Flow Control
⚬ Hop-by-hop flow control

⚬ Pause upstream devices when buffer is about to overflow

Upstream Device Downstream Device

Background: PFC

• Ethernet: Priority-based Flow Control
⚬ Hop-by-hop flow control

⚬ Pause upstream devices when buffer is about to overflow

Xoff

Upstream Device Downstream Device

Background: PFC

• Ethernet: Priority-based Flow Control
⚬ Hop-by-hop flow control

⚬ Pause upstream devices when buffer is about to overflow

PAUSE

About to overflow

Send PAUSE frame

Xoff

Upstream Device Downstream Device

Background: PFC

• Ethernet: Priority-based Flow Control
⚬ Hop-by-hop flow control

⚬ Pause upstream devices when buffer is about to overflow

PAUSE

About to overflow

Send PAUSE frame

Xoff

Upstream Device Downstream Device

Background: PFC

• Ethernet: Priority-based Flow Control
⚬ Hop-by-hop flow control

⚬ Pause upstream devices when buffer is about to overflow

About to overflow

Send PAUSE frame

Xoff

Upstream Device Downstream Device

Background: PFC

• Ethernet: Priority-based Flow Control
⚬ Hop-by-hop flow control

⚬ Pause upstream devices when buffer is about to overflow

⚬ PFC messages are harmful

■ HoL blocking, congestion spreading, collateral damage, deadlock

■ We should avoid PFC messages as much as possible

PAUSE

About to overflow

Send PAUSE frame

Xoff

Upstream Device Downstream Device

Background: Headroom

• Buffer Headroom
⚬ It takes time for the PAUSE frame to take effect

⚬ Buffer headroom: absorb arriving packets during this time

Xoff

PAUSE

Upstream Device Downstream Device

Background: Headroom

• Buffer Headroom
⚬ It takes time for the PAUSE frame to take effect

⚬ Buffer headroom: absorb arriving packets during this time

Xoff
Buffer Headroom

PAUSE

Upstream Device Downstream Device

Background: Headroom

• Buffer Headroom
⚬ It takes time for the PAUSE frame to take effect

⚬ Buffer headroom: absorb arriving packets during this time

Xoff
Buffer Headroom

PAUSE

Upstream Device Downstream Device

Background: Headroom

• Buffer Headroom
⚬ It takes time for the PAUSE frame to take effect

⚬ Buffer headroom: absorb arriving packets during this time

Xoff
Buffer Headroom

PAUSE

Propagation time: a Link Delay
Upstream Device Downstream Device

Background: Headroom

• Buffer Headroom
⚬ It takes time for the PAUSE frame to take effect

⚬ Buffer headroom: absorb arriving traffic during this time

Xoff
Buffer Headroom

Upstream Device Downstream Device

Background: Headroom

• Buffer Headroom
⚬ It takes time for the PAUSE frame to take effect

⚬ Buffer headroom: absorb arriving traffic during this time

Xoff
Buffer Headroom

In-flight Packets
Upstream Device Downstream Device

Background: Headroom

• Buffer Headroom
⚬ It takes time for the PAUSE frame to take effect

⚬ Buffer headroom: absorb arriving traffic during this time

Xoff
Buffer Headroom

Upstream Device Downstream Device

Background: Buffer Organization

• Buffer structure
⚬ Headroom buffer: absorb in-flight packets after sending PAUSE frame

⚬ Shared buffer: shared among all queues

⚬ Private buffer: dedicate buffer for each queue

Lossless PoolHeadroom Shared Private

Packet Buffer

FootroomHeadroom

Xoff

Background: Buffer Organization

• Buffer allocation
⚬ Headroom buffer (for each ingress queue)

■ Link capacity * Delay for PAUSE to take effect

⚬ Shared buffer: dynamically allocated

⚬ Private buffer: statically configured

Lossless PoolHeadroom Shared Private

Packet Buffer

FootroomHeadroom

Motivation

• What we expect
⚬ Headroom

■ A small fraction

⚬ Footroom

■ Most buffer

■ Aborb burst without triggering PFC messages

Headroom Shared Private

Footroom: LargeHeadroom: Small

Motivation

• What the reality is
⚬ Headroom

■ As large as ~67%

⚬ Footroom

■ Only a small fraction

■ PFC messages can be frequently triggered

Headroom Shared Private

Footroom: Squeezed ☹ Headroom: ~67%

Motivation

• Why?
⚬ Reason 1: Buffer is increasingly insufficient

■ Buffer is integrated on the chip

■ Buffer size is limited by the chip area

Buffer trends in Broadcom’s switching chip:
Buffer size per unit of capacity has decreased by 4×

Chip Trident+ Trident2 Tomahawk2 Tomahawk3 Tomahawk4

Capacity 480Gbps 1.28Tbps 6.4Tbps 12.8Tbps 25.6Tbps

Year 2010 2012 2016 2017 2019

40

80

120

160

B
uf

fe
rS

iz
e

/C
ap

ac
ity

(µ
s)

Buffer Size

Motivation

• Why?
⚬ Reason 1: Buffer is increasingly insufficient

■ Buffer is integrated on the chip

■ Buffer size is limited by the chip area

Buffer trends in Broadcom’s switching chip:
Buffer size per unit of capacity has decreased by 4×

Inevitable ☹

Motivation

• Why?
⚬ Reason 2: headroom allocation method is inefficient

■ Current headroom allocation method (SIH): static and independent
□ Reserve a static fraction of buffer beforehand

◇ Higher link capacity, larger headroom buffer

□ Independently reserve buffer for every ingress queue

Motivation

• Why?
⚬ Reason 2: headroom allocation method is inefficient

■ Current headroom allocation method (SIH): static and independent
□ Reserve a static fraction of buffer beforehand

◇ Higher link capacity, larger headroom buffer

□ Independently reserve buffer for every ingress queue

Chip Trident+ Trident2 Tomahawk2 Tomahawk3 Tomahawk4

Capacity 480Gbps 1.28Tbps 6.4Tbps 12.8Tbps 25.6Tbps

Year 2010 2012 2016 2017 2019

40

80

120

160

B
uf

fe
rS

iz
e

/C
ap

ac
ity

(µ
s)

Buffer Size
Headroom Size

Motivation

• Why?
⚬ Reason 2: headroom allocation method is inefficient

■ Current headroom allocation method (SIH): static and independent
□ Reserve a static fraction of buffer beforehand

◇ Higher link capacity, larger headroom buffer

□ Independently reserve buffer for every ingress queue

Chip Trident+ Trident2 Tomahawk2 Tomahawk3 Tomahawk4

Capacity 480Gbps 1.28Tbps 6.4Tbps 12.8Tbps 25.6Tbps

Year 2010 2012 2016 2017 2019

40

80

120

160

B
uf

fe
rS

iz
e

/C
ap

ac
ity

(µ
s)

Buffer Size
Headroom Size

Headroom Shared Private

Per Queue

Per Queue

Per Queue

Per Queue

Per Queue

Motivation

• Why?
⚬ Reason 2: headroom allocation method is inefficient

■ Current headroom allocation method (SIH): static and independent
□ Reserve a static fraction of buffer

◇ : Higher link capacity, larger headroom buffer

□ Independently reserve buffer for every ingress queue

η = 2(C ⋅ Dprop + LMTU) + 3840B

Headroom buffer utilization at the local maximum point:
Only 4.96% at the median

Motivation

• Why?
⚬ Reason 2: headroom allocation method is inefficient

■ Current headroom allocation method (SIH): static and independent
□ Reserve a static fraction of buffer

◇ : Higher link capacity, larger headroom buffer

□ Independently reserve buffer for every ingress queue

■ Why this is inefficient?
□ Not all queues need to occupy headroom

□ Different ingress queues in the same port share the uplink capacity

□ Upstream devices is not always sending traffic at full rate

η = 2(C ⋅ Dprop + LMTU) + 3840B

Motivation

• Why?
⚬ Reason 2: headroom allocation method is inefficient

■ Current headroom allocation method: static and independent
□ Reserve a static fraction of buffer

□ Independently reserve buffer for every ingress queue

■ Why this is inefficient?
□ Not all queues need to occupy headroom

□ Different ingress queues naturally share the uplink capacity

□ Upstream devices is not always sending traffic at full rate

Headroom allocation scheme should be improved

Our Approach:
Dynamic Shared Headroom

PrivateShared

Design

Headroom

Per port

Observation 1: Different ingress queues share the uplink capacity

Idea 1 (Shared): Reserve enough buffer for each port

No need to independently reserve buffer for each queue

Per port

Insurance Headroom

PrivateShared

Design

Headroom

Per port

Observation 1: Different ingress queues share the uplink capacity

Idea 1 (Shared): Reserve enough buffer for each port

No need to independently reserve buffer for each queue

Per port

Insurance Headroom

Only insurance headroom? Performance isolation is violated

Design

Observation 2: Not all queues need to occupy headroom

Idea 2 (Dynamic): Allocate headroom based on the congestion status

A queue needs headroom only when congested

Shared Private

Per port

Per port

Insurance Headroom

Dynamic

Dynamic Allocated Headroom

Design

Observation 3: Upstream devices are not always sending traffic at full rate

Idea 3 (Shared): let all queues share the allocated buffer

No need to allocate worst-case buffer for all queues

Shared Private

Per port

Per port

Dynamic
and

Shared

Insurance HeadroomShared Headroom, Dynamic Allocated

Design

• Buffer structure with DSH
⚬ Insurance Headroom

■ Ensure lossless forwarding

■ Per-port allocated (rather than per-queue)

■ Shared by queues in the same port

Shared by All queues Private

Per Port

Per Port

Insurance Headroom

Design

• Buffer structure with DSH
⚬ Shared Buffer = Shared Headroom + Shared Footroom

■ Shared headroom
□ Prevent performance isolation issue

□ Dynamically allocated as needed

□ Shared by all queues

■ Shared footroom: the same as traditional

Shared by All queues Private

Per Port

Per Port

Shared Buffer

Design

• Benefits: readily realizing
⚬ DSH does not modify the buffer structure

Existing
DSH

Design

• Benefits: readily realizing
⚬ DSH does not modify the buffer structure

Existing
DSH

Statically Allocated

Design

• Benefits: readily realizing
⚬ DSH does not modify the buffer structure

Existing
DSH

Statically Allocated Dynamically Allocated

Design

• Benefits: readily realizing
⚬ DSH does not modify the buffer structure

⚬ DSH can be simply realized by flow control

■ [Queue-level] Buffer occupancy of a queue >
□ Occupy the shared headroom

□ Send PAUSE frame to pause the queue

■ [Port-level] Buffer occupancy of a port >
□ Occupy the insurance headroom

□ Send PAUSE frame to pause the entire port

Xqoff

Xpoff

Evaluation — PFC Avoidance

Scenario Total Pause Time

DSH can absorb 4× more bursty traffic without triggering PFC messages

Evaluation — Deadlock Avoidance

Scenario CDF of deadlock onset time

DSH can avoid 96% deadlocks with DCQCN and all deadlocks with PowerTCP

Evaluation — Collateral Damage Mitigation

Scenario Throughput of (w/o CC)F0

DSH can effectively avoid performance degradation of the innocent flow

Evaluation

• Large-scale benchmark traffic
⚬ 100Gbps leaf-spine topology

■ 16 leaf switches, 16 spine switches, 256 servers

⚬ 16MB buffer (emulating Broadcom Tomahawk)

⚬ Transport

■ DCQCN

■ PowerTCP

⚬ Workload

■ Fan-in flows: 16 senders send 64KB data to 1 receiver

■ Background flows
□ Flow size: web search traffic

□ Flow arrival: Poisson

■ Total network load: 90%

Evaluation — Large-scale Benchmark

FCT of fan-in traffic (DCQCN) FCT of fan-in traffic (PowerTCP)

Fan-in traffic: DSH can reduce the FCT by up to 57.7%

FCT of background traffic (DCQCN) FCT of background traffic (PowerTCP)

Background traffic: DSH can reduce the FCT by up to 31.1%

Conclusion

• Buffer becomes increasingly insufficient while
current headroom allocation scheme is quite
inefficient

• DSH is an efficient headroom allocation
scheme, which dynamically allocates headroom
and enables headroom to be shared

• DSH can significantly reduce PFC messages

Thank you!

