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Background: Lossless Network

• Lossless network is very attractive in DCN 
⚬ Ultra-low latency and high throughput
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Background: PFC

• Ethernet: Priority-based Flow Control 
⚬ Hop-by-hop flow control

⚬ Pause upstream devices when buffer is about to overflow
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Background: PFC

• Ethernet: Priority-based Flow Control 
⚬ Hop-by-hop flow control

⚬ Pause upstream devices when buffer is about to overflow

⚬ PFC messages are harmful

■ HoL blocking, congestion spreading, collateral damage, deadlock 

■ We should avoid PFC messages as much as possible

PAUSE

About to overflow

Send PAUSE frame
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Background: Headroom

• Buffer Headroom 
⚬ It takes time for the PAUSE frame to take effect

⚬ Buffer headroom:  absorb arriving packets during this time
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Background: Headroom

• Buffer Headroom 
⚬ It takes time for the PAUSE frame to take effect

⚬ Buffer headroom:  absorb arriving packets during this time
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• Buffer Headroom 
⚬ It takes time for the PAUSE frame to take effect
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Background: Headroom

• Buffer Headroom 
⚬ It takes time for the PAUSE frame to take effect

⚬ Buffer headroom:  absorb arriving traffic during this time
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Background: Buffer Organization

• Buffer structure 
⚬ Headroom buffer: absorb in-flight packets after sending PAUSE frame

⚬ Shared buffer: shared among all queues

⚬ Private buffer: dedicate buffer for each queue

Lossless PoolHeadroom Shared Private

Packet Buffer
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Background: Buffer Organization

• Buffer allocation 
⚬ Headroom buffer (for each ingress queue)

■ Link capacity * Delay for PAUSE to take effect 

⚬ Shared buffer: dynamically allocated

⚬ Private buffer: statically configured

Lossless PoolHeadroom Shared Private

Packet Buffer

FootroomHeadroom



Motivation

• What we expect 
⚬ Headroom

■ A small fraction 

⚬ Footroom

■ Most buffer 

■ Aborb burst without triggering PFC messages

Headroom Shared Private

Footroom: LargeHeadroom: Small



Motivation

• What the reality is 
⚬ Headroom

■ As large as ~67% 

⚬ Footroom

■ Only a small fraction 

■ PFC messages can be frequently triggered

Headroom Shared Private

Footroom: Squeezed ☹ Headroom: ~67%



Motivation

• Why? 
⚬ Reason 1: Buffer is increasingly insufficient

■ Buffer is integrated on the chip 

■ Buffer size is limited by the chip area

Buffer trends in Broadcom’s switching chip:
Buffer size per unit of capacity has decreased by 4×

Chip Trident+ Trident2 Tomahawk2 Tomahawk3 Tomahawk4

Capacity 480Gbps 1.28Tbps 6.4Tbps 12.8Tbps 25.6Tbps

Year 2010 2012 2016 2017 2019
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Motivation

• Why? 
⚬ Reason 1: Buffer is increasingly insufficient

■ Buffer is integrated on the chip 

■ Buffer size is limited by the chip area

Buffer trends in Broadcom’s switching chip:
Buffer size per unit of capacity has decreased by 4×

Inevitable ☹



Motivation

• Why? 
⚬ Reason 2: headroom allocation method is inefficient

■ Current headroom allocation method (SIH): static and independent 
□ Reserve a static fraction of buffer beforehand 

◇ Higher link capacity, larger headroom buffer 

□ Independently reserve buffer for every ingress queue
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• Why? 
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Motivation

• Why? 
⚬ Reason 2: headroom allocation method is inefficient

■ Current headroom allocation method (SIH): static and independent 
□ Reserve a static fraction of buffer 

◇  :   Higher link capacity, larger headroom buffer 

□ Independently reserve buffer for every ingress queue

η = 2(C ⋅ Dprop + LMTU) + 3840B

Headroom buffer utilization at the local maximum point:
Only 4.96% at the median
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■ Current headroom allocation method (SIH): static and independent 
□ Reserve a static fraction of buffer 

◇  :   Higher link capacity, larger headroom buffer 

□ Independently reserve buffer for every ingress queue 
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□ Not all queues need to occupy headroom 

□ Different ingress queues in the same port share the uplink capacity 

□ Upstream devices is not always sending traffic at full rate
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Motivation

• Why? 
⚬ Reason 2: headroom allocation method is inefficient

■ Current headroom allocation method: static and independent 
□ Reserve a static fraction of buffer 

□ Independently reserve buffer for every ingress queue 

■ Why this is inefficient? 
□ Not all queues need to occupy headroom 

□ Different ingress queues naturally share the uplink capacity 

□ Upstream devices is not always sending traffic at full rate

Headroom allocation scheme should be improved



Our Approach:
Dynamic Shared Headroom
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Design

Headroom

Per port

Observation 1: Different ingress queues share the uplink capacity

Idea 1 (Shared): Reserve enough buffer for each port

No need to independently reserve buffer for each queue

Per port

Insurance Headroom

Only insurance headroom? Performance isolation is violated



Design

Observation 2: Not all queues need to occupy headroom

Idea 2 (Dynamic): Allocate headroom based on the congestion status

A queue needs headroom only when congested

Shared Private

Per port
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Design

Observation 3: Upstream devices are not always sending traffic at full rate

Idea 3 (Shared): let all queues share the allocated buffer

No need to allocate worst-case buffer for all queues

Shared Private

Per port

Per port

Dynamic 
and 

Shared
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Design

• Buffer structure with DSH 
⚬ Insurance Headroom

■ Ensure lossless forwarding 

■ Per-port allocated (rather than per-queue ) 

■ Shared by queues in the same port

Shared by All queues Private

Per Port
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Design

• Buffer structure with DSH 
⚬ Shared Buffer = Shared Headroom + Shared Footroom

■ Shared headroom 
□ Prevent performance isolation issue 

□ Dynamically allocated as needed 

□ Shared by all queues 

■ Shared footroom: the same as traditional

Shared by All queues Private

Per Port

Per Port

Shared Buffer



Design

• Benefits: readily realizing 
⚬ DSH does not modify the buffer structure

Existing
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Design

• Benefits: readily realizing 
⚬ DSH does not modify the buffer structure

⚬ DSH can be simply realized by flow control

■ [Queue-level] Buffer occupancy of a queue >  
□ Occupy the shared headroom 

□ Send PAUSE frame to pause the queue 

■ [Port-level] Buffer occupancy of a port >  
□ Occupy the insurance headroom 

□ Send PAUSE frame to pause the entire port

Xqoff

Xpoff



Evaluation — PFC Avoidance

Scenario Total Pause Time

DSH can absorb 4× more bursty traffic without triggering PFC messages



Evaluation — Deadlock Avoidance

Scenario CDF of deadlock onset time

DSH can avoid 96% deadlocks with DCQCN and all deadlocks with PowerTCP



Evaluation — Collateral Damage Mitigation

Scenario Throughput of  (w/o CC)F0

DSH can effectively avoid performance degradation of the innocent flow



Evaluation

• Large-scale benchmark traffic 
⚬ 100Gbps leaf-spine topology

■ 16 leaf switches, 16 spine switches, 256 servers 

⚬ 16MB buffer (emulating Broadcom Tomahawk)

⚬ Transport

■ DCQCN 

■ PowerTCP 

⚬ Workload

■ Fan-in flows: 16 senders send 64KB data to 1 receiver 

■ Background flows 
□ Flow size: web search traffic 

□ Flow arrival: Poisson 

■ Total network load: 90%



Evaluation — Large-scale Benchmark

FCT of fan-in traffic (DCQCN) FCT of fan-in traffic (PowerTCP)

Fan-in traffic: DSH can reduce the FCT by up to 57.7%

FCT of background traffic (DCQCN) FCT of background traffic (PowerTCP)

Background traffic: DSH can reduce the FCT by up to 31.1%



Conclusion

• Buffer becomes increasingly insufficient while 
current headroom allocation scheme is quite 
inefficient 

• DSH is an efficient headroom allocation 
scheme, which dynamically allocates headroom 
and enables headroom to be shared 

• DSH can significantly reduce PFC messages



Thank you!


