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Background: Lossless Network

* Lossless network is very attractive in DCN
O Ultra-low latency and high throughput

Distributed
Storage

Distributed Deep
Learning

RDMA

Lossless Network



Background: PFC

* Ethernet: Priority-based Flow Control

O Hop-by-hop flow control

O Pause upstream devices when buffer is about to overflow
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Background: PFC

* Ethernet: Priority-based Flow Control

O Hop-by-hop flow control

O Pause upstream devices when buffer is about to overflow

O PFC messages are harmful
m Hol blocking, congestion spreading, collateral damage, deadlock
m We should avoid PFC messages as much as possible

Upstream Device Downstream Device
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Background: Headroom

 Buffer Headroom

O It takes time for the PAUSE frame to take effect

O Buffer headroom: absorb arriving packets during this time
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 Buffer Headroom

O It takes time for the PAUSE frame to take effect

O Buffer headroom: absorb arriving packets during this time

Buffer Headroom
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Propagation time: a Link Delay
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O It takes time for the PAUSE frame to take effect

O Buffer headroom: absorb arriving traffic during this time

Buffer Headroom

| nny1+—1—1

Upstream Device Downstream Device




Background: Headroom

 Buffer Headroom

O It takes time for the PAUSE frame to take effect

O Buffer headroom: absorb arriving traffic during this time
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Background: Headroom

 Buffer Headroom

O It takes time for the PAUSE frame to take effect

O Buffer headroom: absorb arriving traffic during this time

Buffer Hed room
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Background: Buffer Organization

» Buffer structure
O Headroom buffer: absorb in-flight packets after sending PAUSE frame

O Shared buffer: shared among all queues

O Private buffer: dedicate buffer for each queue

Headroom - Footroom

Headroom Shared Private

= Packet Buffer



Background: Buffer Organization

e Buffer allocation

O Headroom buffer (for each ingress queue)
m Link capacity * Delay for PAUSE to take effect
O Shared buffer: dynamically allocated

O Private buffer: statically configured

Headroom Footroom

Headroom Shared Private

Packet Buffer



Motivation

* What we expect

O Headroom
m A small fraction
O Footroom
m Most buffer
m Aborb burst without triggering PFC messages

Headroom: Small Footroom: Large

Headroom Private




Motivation

* What the reality is

O Headroom
m Aslarge as ~67%
O Footroom
m Only a small fraction

m PFC messages can be frequently triggered

Headroom: ~67% Footroom: Squeezed ®

Headroom Private




e Why?

Motivation

O Reason |:Buffer is increasingly insufficient

m Buffer is integrated on the chip

m Buffer size
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Year
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Buffer trends in Broadcom’s switching chip:

Buffer size per unit of capacity has decreased by 4%



Motivation

Inevitable ®



Motivation

e Why?

O Reason 2: headroom allocation method is inefficient

m Current headroom allocation method (SIH): static and independent

O Reserve a static fraction of buffer beforehand

<& Higher link capacity, larger headroom buffer

0 Independently reserve buffer for every ingress queue
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Motivation

e Why?

O Reason 2: headroom allocation method is inefficient

m Current headroom allocation method (SIH): static and independent

O Reserve a static fraction of buffer beforehand

<& Higher link capacity, larger headroom buffer

0 Independently reserve buffer for every ingress queue
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Private
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Motivation

e Why?

O Reason 2: headroom allocation method is inefficient
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Headroom buffer utilization at the local maximum point:

Only 4.96% at the median



Motivation

e Why?

O Reason 2: headroom allocation method is inefficient

m Current headroom allocation method (SIH): static and independent
0 Reserve a static fraction of buffer

O n=2C-D

prop

+ L,,;7) + 3840B : Higher link capacity, larger headroom buffer
0 Independently reserve buffer for every ingress queue

m Why this is inefficient?
0 Not all queues need to occupy headroom

0 Different ingress queues in the same port share the uplink capacity

0 Upstream devices is not always sending traffic at full rate



Motivation

Headroom allocation scheme should be improved



Our Approach:
Dynamic Shared Headroom



Design

Observation 1: Different ingress queues share the uplink capacity

*No need to independently reserve buffer for each queue
Idea 1 (Shared): Reserve enough buffer for each port

Insurance Headroom

Per port

Shared Private

Per port




Design

Observation 1: Different ingress queues share the uplink capacity

¢No need to independently reserve buffer for each queue
Idea 1 (Shared): Reserve enough buffer for each port

Insurance Headroom

Per port

Shared Private

Per port

Only insurance headroom? > Performance isolation is violated



Design

Observation 2: Not all queues need to occupy headroom

¢A queue needs headroom only when congested

Idea 2 (Dynamic): Allocate headroom based on the congestion status

Insurance Headroom Dynamic Allocated Headroom

Per port

Dynamic Shared Private

Per port




Design

Observation 3: Upstream devices are not always sending traffic at full rate

¢No need to allocate worst-case buffer for all queues

Idea 3 (Shared): let all queues share the allocated buffer

Insurance HeadroomShared Headroom, Dynamic Allocated

Per port
Dynamic

and Shared Private
Shared

Per port




Design

e Buffer structure with DSH

O Insurance Headroom
m Ensure lossless forwarding
m Per-port allocated (rather than per-queue )

m Shared by queues in the same port

Insurance Headroom

Per Port

Shared by All queues Private




Design

e Buffer structure with DSH

O Shared Buffer = Shared Headroom + Shared Footroom

m Shared headroom
0 Prevent performance isolation issue
0 Dynamically allocated as needed
0 Shared by all queues
m Shared footroom: the same as traditional
Shared Buffer

Per Port

Shared by All queues Private

Per Port




Design

* Benefits: readily realizing
O DSH does not modify the buffer structure

DSH

Existing
Insurance Shared Buffer Private Buffer
Headroom  (Shared Headroom+Shared Footroom) (Footroom)
Headroom Buffer Shared Buffer  Private Buffer (B;) (Bs) (Bp)
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Design

* Benefits: readily realizing
O DSH does not modify the buffer structure

o DSH
Existing
Insurance Shared Buffer Private Buffer
Headroom  (Shared Headroom+Shared Footroom) (Footroom)
Headroom Buffer Shared Buffer  Private Buffer (B;) (Bs) (Bp)
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Design
* Benefits: readily realizing

O DSH can be simply realized by flow control

m [Queue-level] Buffer occupancy of a queue > X,

0 Occupy the shared headroom

0 Send PAUSE frame to pause the queue
m [Port-level] Buffer occupancy of a port> X, .,

0 Occupy the insurance headroom

0 Send PAUSE frame to pause the entire port




Evaluation — PFC Avoidance
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DSH can absorb 4x more bursty traffic without triggering PFC messages



Evaluation — Deadlock Avoidance
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DSH can avoid 96% deadlocks with DCQCN and all deadlocks with PowerTCP



Evaluation — Collateral Damage Mitigation
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DSH can effectively avoid performance degradation of the innocent flow



Evaluation

* Large-scale benchmark traffic
O 100Gbps leaf-spine topology

m 16 leaf switches, 16 spine switches, 256 servers
o |16MB buffer (emulating Broadcom Tomahawk)
O Transport
m DCQCN
m PowerTCP
o Workload
m Fan-in flows: 16 senders send 64KB data to 1 receiver

m Background flows
O Flow size: web search traffic

O Flow arrival: Poisson

m Total network load: 90%



Evaluation — Large-scale Benchmark
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Fan-in traffic: DSH can reduce the FCT by up to 57.7%
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Background traffic: DSH can reduce the FCT by up to 31.1%



Conclusion

* Buffer becomes increasingly insufficient while
current headroom allocation scheme is quite
inefficient

e DSH is an efficient headroom allocation
scheme, which dynamically allocates headroom
and enables headroom to be shared

* DSH can significantly reduce PFC messages



Thank you!



