EURD SYS'25

\
Occamy

A Preemptive Buffer Management for
On-chip Shared-memory Switches

Danfeng Shan, Yunguang Li, Jinchao Ma, Zhenxing Zhang,
Zeyu Liang, Xinyu Wen, Hao Li, Wanchun Jiang, Nan Li, Fengyuan Ren

https://github.com/ants-xjtu/Occamy

&) 7 ST WL HUAWEN

0 < XI'AN JIAO NIVERSITY -

https://github.com/ants-xjtu/Occamy
https://github.com/ants-xjtu/Occamy
https://github.com/ants-xjtu/Occamy

Switches and Buffers

0 Switch Buffer

€ Short flows: Absorb transient bursts
€ Long flows: Maintain high-throughput

3 g

3 CJ

D =

a a

Y— e

5 5

£ S

- = 20/ -o-ECN*

-8-DCTCP

0 i i

50 100 150 200 250 300
ECN marking threshold (KB)

Microbursts encompass most congestion events!!l DCTCP requires ~60-70% BDP buffering for 100% throughput?

[1] Zhang Q, Liu V, Zeng H, et al. High-resolution measurement of data center microbursts[C]//Proceedings of ACM IMC. 2017: 78-85.
[2] Bai W, Hu S, Chen K, et al. One more config is enough: Saving (DC) TCP for high-speed extremely shallow-buffered datacenters[J]. IEEE/ACM Transactions on Networking,
2020, 29(2): 489-502.

Switches and Buffers

O Today’'s DCN Switch: On-ship Shared-Memory
Globally shared on-chip packet buffer

' v
|| Packet-Processing| : Packet-Processing
' Block : : Block
Ingress | ‘ Ingress
8x50Gbps [** Pipeline g ““ Pipeline
Port Block : :
Egress 1 : Egress
) Pipeline [i Pipeline
i | Ingress Traffic |
: Manager ||
" With :
|
I| Packet-Processing| 1 SRERL! B : Packet-Processing
Block : : Block
Ingress I i Ingress
8x50Gbps [+ Pipeline - e Pipeline
Port Block Egress : : Egross
) Pipeline | ' Pipeline
! I

8x50Gbps

||| Port Block

8x50Gbps

||| Port Block

Broadcom Tomahawk 4 switch chipl']
[1] https://docs.broadcom.com/docs/12398014

Switches and Buffers

0 Trends of Switch Buffer

L4 K L
WikiChi
. i Chips & Semi p TSMC HD SRAM Trend I
: H Tomahawk 5

>12 Years of Predictable Execution 0.10= 0.074

+ 80x Bandwidth Increase Ml 51.2T 16nm

* 95% Improved Energy Efficiency

Tomahawk 3 B 0.042
J' Tomahawk 2 iE:i. ghgnz(]ﬁs,;), =N
6.4T o /2 =
Tomahawk E 0 - 0 2 7 =
A 3 oT Key Enablers a2 ‘7
i ’ - Efficient, Scalable Architecture /
s - Leading-Edge Process Technology 0.021 g.Ol?%

A 1.28T + Best-In-Class, Custom Physical IP | | [| | [;S“ml I nrln N ls) | [|
Trident - Physical Design Expertise 0 : O 1 T I I I T | [] [] T T T >
640G Do s w0 el W B O D O a o o

o, ‘o, ‘o, ‘o, ‘o, ‘0o, ‘0, 0o, 0, 0, 0, 0, 0, 0,0

m &] ® o b v R AN I I A IR N)
2010 2012 2014 2016 2018 2020 2022 WikiChip © et il ol ool e e e

Doubling the switching capacity every two years!'! SRAM scaling appears to have completely collapsed!?]

N
© BROADCOM' ek

O

[1] https://www.broadcom.com/blog/driving-the-data-center-into-the-future
[2] https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram

https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram

Switches and Buffers

0 Trends of Switch Buffer

Irident+ (ZU10)

Tomahawk2 (2016)

40 Tomahawk3 (2017)~
Tomahawk4 (2019)

Buffer Size / Capacity (us)
o0
-
=
&
=
S

0.48 1.28 6.4 12.8 25.6
Switching Capacity (Tbps)

The switch buffer (relative to capacity) has been decreased by 4x

Buffer Management (BM)

O Buffer Management (BM): Allocate buffer across queues

Enqueue
9 HEREEEEEEEEEEER

HEEEE
B —| BMm Queues

D;op Packet Buffer

O Goals of BM
& Fair: Don’t starve queues when facing dynamic traffic
& Efficient: Don’t waste the scarce buffer for maximizing burst absorption
€ Simple: Easy to be implemented in high-speed switch chip

Buffer Management (BM)

O Analogy: iCloud Storage Sharing

Six members share iCloud storage

Buffer Management (BM)

O Analogy: iCloud Storage Sharing

Six members share iCloud storage

I require 90GB , :
We don’t require any storage, for now.

But we may require 100GB in the future

How to Share the iCloud Storage?

0 Scheme 1: Sufficient Reservation
€ Example BMs: Complete Partition, DT with a small a

We are rich.
Let’s just buy 2TB storage.

Everyone gets 333GB.

Six members share iCloud storage

0GB 0GB 0GB 0GB 0GB 0GB

v Fair v Simple X Efficient

B Effective when buffer is sufficient
B Status quo: insufficient buffer

How to Share the iCloud Storage?

0 Scheme 2: On-demand Allocation
€ Example BMs: Complete Sharing, DT with a large a

We are poor and can only afford 100GB storage.
Let's buy 100GB storage,

and dynamically share among members

Six members share iCloud storage

0GB 0GB 0GB 0GB 0GB 0GB

© © © © © ©

1styear

How to Share the iCloud Storage?

0 Scheme 2: On-demand Allocation
€ Example BMs: Complete Sharing, DT with a large a

: Hey, I require 20GB storage now.
Fine. But you need to wait. y,1Teq g

Can you give me 10GB?
I need to clean my storage. yeu s

Six members share iCloud s

90GB 0GB 0GB 0GB 0GB 10GB

© © v © O O

2nd year

YEA
LAl

1 29
Wi @&Z®)

How to Share the iCloud Storage?

0 Scheme 2: On-demand Allocation
€ Example BMs: Complete Sharing, DT with a large a

I have cleaned the storage for you. Too late.

My iPhone is lost and all photos are gone.

ix members share iClou®

80GB 10GB 0GB 0GB 0GB 0GB

© © v © O 6

10 years later

The Buffer Choking Problem

High-priority traffic thirsts for buffer,

suffering from packet drops

High-priority traffic occupies
(latency-sensitive traffic) most bandwidth

Bursty

- IIIIIII
Background - . '

Traffic Low-priority traffic occupies lots of buffer,

but draining slowly

High Priority Queue

Low Priority Queue

The Buffer Choking Problem

Experiments on Huawei CE6865 switch

o0 1 _
- —©— w/o low-priority traffic 200; ’

- —¢ w/ low-priority traffic

2| 2 150}

Sh 0

s ¢ 100

.20
SO 2 |
< 103_ = o0 | —©— w/o low-priority traffic
: oo —>— w/ low-priority traffic
% 2 4 6 8 10 12 14 %0 04 6 8 10 12 14
Query Size (MB) Query Size (MB)
Average Query Completion Time 99th Query Completion Time
degraded by up to 8 X degraded by up to 90X

Buffer choking can significantly degrade the transmission performance

How to Share the iCloud Storage?

0 Scheme 2: On-demand Allocation
€ Example BMs: Complete Sharing, DT with a large a

We are poor and can only afford 100GB
Let’s buy 100GB storage,

and dynamically share among members

Six members share iCloud storage

0GB 0GB 0GB 0GB 0GB 0GB

v Efficient v Simple X Fair

B Effective with very smooth traffic
B Status quo: highly bursty traffic (e.g., 1000:1 incast)

How to Share the iICloud Storage?

O Why on-demand allocation is not fair?
€ Non-preemption: Passively wait for others to naturally free the space

How to Share the iCloud Storage?

O An optimal scheme for (poor) people (i.e., Pushout)

I want another 10GB It's OK!

Sixgembers share iCloud storage

100GB 0GB 0GB 0GB 0GB 0GB

© © v © O O

€ Everyone can get space whenever there is free storage

How to Share the iCloud Storage?

O An optimal scheme for (poor) people (i.e., Pushout)

Hey, evacuate 10GB storage. I want 10GB

This is an order, not a request

embers share iCloud storg®e

100GB 0GB 0GB 0GB 0GB 0GB

Si

€@ Everyone can get space whenever there is free storage

@© If someone requires space while storage is full, reclaim the storage of the person using the most storage.

How to Share the iCloud Storage?

O An optimal scheme for (poor) people (i.e., Pushout)

Hey, evacuate 10GB storage. I want 10GB

This is an order, not a request

embers share iCloud storg®e

100GB 0GB 0GB 0GB 0GB 10GB

© © v © O O

€@ Everyone can get space whenever there is free storage

@© If someone requires space while storage is full, reclaim the storage of the person using the most storage.

How to Share the iCloud Storage?

O An optimal scheme for (poor) people (i.e., Pushout)

Hey, evacuate 10GB storage. I want 10GB

This is an order, not a request

embers share iCloud storg®e

100GB 0GB 0GB 0GB 0GB 10GB

© © v © O O

€@ Everyone can get space whenever there is free storage

@ If storage is full and someone needs space, remove the data of the person using the most storage.
v' Efficient v Fair X Simple

Why the Optimal Scheme is not Simple

O Difficulty 1: Require extra memory bandwidth

Extra memory operation

Packet Packet Packet Packet

Packet Packet Packet Packet

|
® Engueue a packet (memory write) €@ Dequeue a packet (memory read)
Ingress side: Packet Buffer | Egress side
when buffer is full : :
= =
Enqueue o . Dequeue

B Unacceptable for traditional off-chip shared-memory switch
B Status quo: On-chip shared-memory switch significantly extends memory bandwidth

Why the Optimal Scheme is not Simple

O Difficulty 2: Require complex enqueue operations

€ Notify the egress side to expel a packet

Packet Packet Packet Packet

€@ Pause the enqueue operations
© Add a buffer to store the packet

I

Packet Packet Packet Packet

Ingresz| sidei Packet Buffer ; EgresL side

when buffer is full i i
Enqueue ! | Dequeue

il Packet || Packet | Packet § Packet §

fl Packet | Packet § Packet | Packet J§

O Notify the ingress side to enqueue the packet

Why the Optimal Scheme is not Simple

O Difficulty 3: Monitoring the longest queue in real time

Area complexity: O(kN) v Acceptable

Time complexity: O(log,K % log, N) X Unacceptable

qi q2 q3 q4 qs 96 q7 qs
CMP & MUX CMP & MUX CMP & MUX CMP & MUX
| I I | I I |
maX{(h, (JZ}V VmaX{QB, CI4} max{q5, de }V Vmax{q% qg}
CMP & MUX CMP & MUX
|]
ab maX{Ch, q2, 43, 614}v vmaX{CIS, e, 47, CIS}
' * CMP & MUX
CMP — T
7 MUX
a> max{q1, gz, - - -, qs}
max{a, b}

Example

€ 64 queues, 16-bit queue length - 7ns latency
€ Queue length changes every 1ns

8-input maximum finder based on binary comparator tree

Occamy

A preemptive buffer management scheme

v' Efficient: (Almost) fully utilize the buffer
v’ Fair: Quickly adjust the buffer allocation
v Simple: Easy to be implemented in switch chip

Occamy

O Expels packets in a round-robin manner— Overcomes the 3 difficulty

O Proactively reserves a small fraction of free buffer

> Overcomes the 2" difficulty

O Keeps admission and expulsion mutually independent

Occamy

Head-drop Output
Selector Scheduler

<=

RX—

Packet

uoissiwpy ==

Packet Buffer

Occamy

Packet Descriptor
(addr of packet data, etc.)

Packet ' Packet Data YPacket

Occamy

A queue is organized as a linked list of PDs

_PD oy PD iy PD
=il PD | PD [PD B
PD oy PD joy PD B

Packet Queues YPacket

RX—>

-

uoissiwpy ==

N Head-drop
Selector

Occa my Packet Expulsion

Scheduler

Arbiter

Packet Admission

Head-drop or Send

Queues

Packet Buffer

Head Drop

~adcke

— IX

Occamy

— Admission

Utilize off-the-shelf BM in commodity switch chips
€ DT: Widely adopted in the commodity switch chip
€ 0=8: Achieve an efficiency of 88.9% in the worst case

v

! ¥
\ /
 PD o PD g PD
—

28 Po 5 o [P SUENSS .
— Sl
PD o PD jo PD [|

Queues

RX—>

Occamy

Head-drop Output
I Selector Scheduler
|
|

— Explusion : [o-====—=——————————=--

3 components

(@ Head-drop selector: Select a head-drop queue

2 Arbiter: Resolving the conflicts of memory read

@ Head-drop executor: Performing the head-drop action

Packet

Packet Buffer

Occamy

0 Head-drop selector: select a head-drop queue

Threshold given by DT \
91 42 43 44 (s (e Ci7 ds

I A e S |

C t
T(t)y—\>/\>/\>/> /—W\M le@ > @:ated buffe

I 1{0]0 ;1,110,100 Iﬂ Maintain alllover-allocated queueslwith a bitmap
v \ l A l v l

\ Round-robin Arbiter /
|

Head-drop Queue Index

Occamy

0 Head-drop selector: select a head-drop queue

71 92 93 44 qs g q
ll 12 13 l ls l6 Ci7 l8C0mparators
T(t)_’\> H>F’\>H> >\ >\ >\ >
0 1 10
Voo |

\ Round-robm Arbiter / @ ltcrates over over-allocated queues

Head-drop Queue Index

Round-robin arbiter;: a common hardware component
in high-speed crossbar switches

Occamy

Head-drop Output
Selector Scheduler

Read PD for head drop

Read PD for TX

Conflicts of Memory Read!

Don’t disturb normal packet forwarding!
Essential to guarantee line-rate forwarding.

Occamy

Output
. Scheduler
I Fixed-priority Arbiter

The read requests from the head-drop selector
are blocked whenever the output scheduler
needs to fetch a packet

Occamy

— Performing head-drop

€ Head-drop shares lots of operations with the normal TX
€ Synthesize it into the existing packet dequeue pipelines

Packet Buffer

Occamy

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cell Pointer @Read Cell Ptr [@Read Cell Ptr
Memory @ Free Cell | @ Free Cell

Read Prev. Cell Read Prev. Cell ® Read Cell ® Read Cell
Data Data Data Data

Cell Data
Memory

— TX pipeline

@ Read a PD from PD memory

@ Dequeue the PD

@ Read cell pointer from cell pointer memory

@ Fee cell (by moving the cell pointer to the free cell ptr list)
® Read cell data

Occamy

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cell Pointer @Read Cell Ptr [@Read Cell Ptr
Memory @ Free Cell | @ Free Cell

— Head-drop pipeline

@ Read a PD from PD memory

@ Dequeue the PD

@ Read cell pointer from cell pointer memory

@ Fee cell (by moving the cell pointer to the free cell ptr list)

B Readcell-data

Occamy

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cell Pointer @Read Cell Ptr [@Read Cell Ptr
Memory @ Free Cell | @ Free Cell

Read Prev. Cell Read Prev. Cell
Data Data

— Synthesized pipeline

Cell Data
Memory

@ Read a PD from PD memory

2 Dequeue the PD

@ Read cell pointer from cell pointer memory

@ Fee cell (by moving the cell pointer to the free cell ptr list)
® Read cell data if TX

Implementations

O Verilog implementation of core components

0 P4-based hardware prototype

O DPDK-based software prototype

[0 Ns-3-based Simulator

https://github.com/ants-xjtu/Occamy

Evaluations

FPGA Cost ASIC Cost
Module LUTs Flip Timing Area = Power
Flops (ns) (mm?) (mW)
Selector 1262 47 1.49 0.023 0.895
Arbiter 3 0 0.17 2.3e-5 0.003
Executor 47 7 0.38 7.3e-4 0.044
FPGA cost by Vivado ASIC cost by Design Compiler

€ <1300 LUTs and 60 Flip Floy

DS

€ 1.5ns timing
€ 0.03mm? area cost and 1TmW power

Evaluations -- ps-based Hw Prototype

0.3 ; s
' —6— Occamy
—¢— DT
Q 0 S SR S—
Cﬁ H
m :
2 .
] 0.1 ...
00l —rf .
%00 600 800

Burst Size (KB)

Occamy can absorb 57% more bursty traffic than DT (a=4)

Avg. QCT (ms)

EvaluatiOnS --- DPDK-based HW Prototype

[
i

- —©— Occamy

[—
(@) \O \®

(V)

20 40 60 80 100 120 140
Query Size (% of Buffer Size)

Occamy can reduce the average
query completion time by up to ~55%

2%
-©- Occamy
- DT
227 b > ABM
é — Pushout
— — w/o back ,
822 |- W/:back
. : /
o)) ’I :
> Vi
< 21 e N D
20

150 170 190 210 230 250
Query Size (% of Buffer Size)

Occamy achieves similar performance to
Pushout when facing buffer choking

W
)

Avg. QCT Slowdown

[
-

Evaluations --ns-3 simulations

[
(\®)

N
o

(o8
=)

[\
o

:. —— Occamy —— DT

-

|

- —+— Pushout \.

[
-
@)

~ W

Avg. QCT Slowdown
N W

Avg. QCT Slowdown

A . < 7 "D SR S S SR

Ik
=
<

—}— Pushout

S NN B~ O o

—— ABM —}— Pushout

o

@b @“‘b @"5&' (ﬁ)@b 6@% S \‘5% %?%' bb%' \qig% qgab{* 6@% S

Query Size (% of Buffer Size) Flow Size Flow Size

20 40 60 80 100 &

Traditional DCN Traffic All-to-all Traffic All-reduce Traffic

Occamy significantly improves the query completion time with various traffic
patterns

Conclusion

O This paper answers 3 questions:

€ What are the fundamental requirements of BMs with insufficient buffer and
intense traffic bursts?

€ Answer: BM should be highly agile

€ What are the intrinsic limitations of current BMs in meeting the requirements
in DCN?

€ Answer: It is the non-preemptive nature that confines the agility of current BM

@ |s it possible to break through these limitations with the recent advances on
buffer architecture?

& Answer: Yes. We design Occamy, a simple yet effective preemptive BM

Thank you!

https://github.com/ants-xjtu/Occamy

	Slide 1: Occamy A Preemptive Buffer Management for On-chip Shared-memory Switches
	Slide 2: Switches and Buffers
	Slide 3: Switches and Buffers
	Slide 4: Switches and Buffers
	Slide 5: Switches and Buffers
	Slide 6: Buffer Management (BM)
	Slide 7: Buffer Management (BM)
	Slide 8: Buffer Management (BM)
	Slide 9: How to Share the iCloud Storage?
	Slide 10: How to Share the iCloud Storage?
	Slide 11: How to Share the iCloud Storage?
	Slide 12
	Slide 13: How to Share the iCloud Storage?
	Slide 14: The Buffer Choking Problem
	Slide 15: The Buffer Choking Problem
	Slide 16: How to Share the iCloud Storage?
	Slide 17: How to Share the iCloud Storage?
	Slide 18: How to Share the iCloud Storage?
	Slide 19: How to Share the iCloud Storage?
	Slide 20: How to Share the iCloud Storage?
	Slide 21: How to Share the iCloud Storage?
	Slide 22: Why the Optimal Scheme is not Simple
	Slide 23: Why the Optimal Scheme is not Simple
	Slide 24: Why the Optimal Scheme is not Simple
	Slide 25
	Slide 26: Occamy
	Slide 27: Occamy
	Slide 28: Occamy
	Slide 29: Occamy
	Slide 30: Occamy
	Slide 31: Occamy
	Slide 32: Occamy
	Slide 33: Occamy
	Slide 34: Occamy
	Slide 35: Occamy
	Slide 36: Occamy
	Slide 37: Occamy
	Slide 38: Occamy
	Slide 39: Occamy
	Slide 40: Occamy
	Slide 41: Implementations
	Slide 42: Evaluations
	Slide 43: Evaluations --- P4-based HW Prototype
	Slide 44: Evaluations --- DPDK-based HW Prototype
	Slide 45: Evaluations --- ns-3 simulations
	Slide 46: Conclusion
	Slide 47: Thank you!

