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Switches and Buffers

 Switch Buffer
◆Short flows:  Absorb transient bursts

◆ Long  flows:  Maintain high-throughput

[1] Zhang Q, Liu V, Zeng H, et al. High-resolution measurement of data center microbursts[C]//Proceedings of ACM IMC. 2017: 78-85.

[2] Bai W, Hu S, Chen K, et al. One more config is enough: Saving (DC) TCP for high-speed extremely shallow-buffered datacenters[J]. IEEE/ACM Transactions on Networking, 

2020, 29(2): 489-502.

Microbursts encompass most congestion events[1] DCTCP requires ∼60-70% BDP buffering for 100% throughput[2]



Switches and Buffers

 Today’s DCN Switch: On-ship Shared-Memory

Broadcom Tomahawk 4 switch chip[1]

[1] https://docs.broadcom.com/docs/12398014

Globally shared on-chip packet buffer



Switches and Buffers

 Trends of Switch Buffer

SRAM scaling appears to have completely collapsed[2]Doubling the switching capacity every two years[1]

[1] https://www.broadcom.com/blog/driving-the-data-center-into-the-future

[2] https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
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Switches and Buffers

 Trends of Switch Buffer
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1The switch buffer (relative to capacity) has been decreased by 4x



Buffer Management (BM)

 Buffer Management (BM):  Allocate buffer across queues

 Goals of BM
◆ Fair:        Don’t starve queues when facing dynamic traffic

◆Efficient:  Don’t waste the scarce buffer for maximizing burst absorption

◆Simple:    Easy to be implemented in high-speed switch chip

…

Packet Buffer

QueuesBM

Drop

Enqueue



Buffer Management (BM)

 Analogy: iCloud Storage Sharing

Six members share iCloud storage



Buffer Management (BM)

 Analogy: iCloud Storage Sharing

Six members share iCloud storage

I require 90GB
We don’t require any storage, for now.
But we may require 100GB in the future



How to Share the iCloud Storage?

 Scheme 1: Sufficient Reservation
◆Example BMs: Complete Partition, DT with a small α

Six members share iCloud storage

We are rich.
Let’s just buy 2TB storage.

Everyone gets 333GB.

90GB 0GB 0GB 0GB 0GB 0GB
☺ ☺ ☺ ☺ ☺ ☺ 

2TB

◼ Effective when buffer is sufficient
◼ Status quo: insufficient buffer

✓ Fair ✓ Simple ✗ Efficient



How to Share the iCloud Storage?

 Scheme 2: On-demand Allocation 
◆Example BMs: Complete Sharing, DT with a large α

Six members share iCloud storage

We are poor and can only afford 100GB storage.
Let’s buy 100GB storage,

and dynamically share among members

1st year

90GB 0GB 0GB 0GB 0GB 0GB

100GB

☺ ☺ ☺ ☺ ☺ ☺ 



How to Share the iCloud Storage?

 Scheme 2: On-demand Allocation
◆Example BMs: Complete Sharing, DT with a large α

Six members share iCloud storage

Hey, I require 20GB storage now.
Can you give me 10GB?

2nd year

90GB 0GB 0GB 0GB 0GB

100GB

Fine. But you need to wait.
 I need to clean my storage.

0GB10GB
☺ ☺ ☺ ☺ ☺   





How to Share the iCloud Storage?

 Scheme 2: On-demand Allocation
◆Example BMs: Complete Sharing, DT with a large α

Six members share iCloud storage

Too late.
My iPhone is lost and all photos are gone.

10 years later

80GB 10GB 0GB 0GB 0GB 0GB

100GB

I have cleaned the storage for you.

☺ ☺ ☺ ☺ ☺   



The Buffer Choking Problem

High Priority Queue
（latency-sensitive traffic)

Low Priority Queue

Background
Traffic

Bursty
Traffic

High-priority traffic occupies 
most bandwidth

Low-priority traffic occupies lots of buffer,
but draining slowly

High-priority  traffic thirsts for buffer,
suffering from packet drops



The Buffer Choking Problem
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Experiments on Huawei CE6865 switch

Average Query Completion Time 99th Query Completion Time

Buffer choking can significantly degrade the transmission performance

degraded by up to 8× degraded by  up to 90×



How to Share the iCloud Storage?

 Scheme 2: On-demand Allocation
◆Example BMs: Complete Sharing, DT with a large α

Six members share iCloud storage

We are poor and can only afford 100GB
Let’s buy 100GB storage,

and dynamically share among members

90GB 0GB 0GB 0GB 0GB 0GB

100GB

◼ Effective with very smooth traffic
◼ Status quo: highly bursty traffic (e.g., 1000:1 incast)

✓ Efficient ✓ Simple ✗ Fair

☺ ☺ ☺ ☺ ☺   



How to Share the iCloud Storage?

Six members share iCloud storage

90GB 0GB 0GB 0GB 0GB 0GB

100GB

We are poor and can only afford 100GB
Let’s buy 100GB storage,

and dynamically share among members

 Why on-demand allocation is not fair?
◆Non-preemption: Passively wait for others to naturally free the space



How to Share the iCloud Storage?

 An optimal scheme for (poor) people (i.e., Pushout)

Six members share iCloud storage

90GB 0GB 0GB 0GB 0GB 0GB

100GB

I want another 10GB It’s OK!

❶ Everyone can get space whenever there is free storage

100GB
☺ ☺ ☺ ☺ ☺ ☺   



How to Share the iCloud Storage?

 An optimal scheme for (poor) people (i.e., Pushout)

Six members share iCloud storage

100GB 0GB 0GB 0GB 0GB 0GB

100GB

I want 10GB
Hey, evacuate 10GB storage.
This is an order, not a request

❷ If someone requires space while storage is full, reclaim the storage of the person using the most storage.

❶ Everyone can get space whenever there is free storage



How to Share the iCloud Storage?

 An optimal scheme for (poor) people (i.e., Pushout)

Six members share iCloud storage

100GB 0GB 0GB 0GB 0GB 0GB

100GB

I want 10GB
Hey, evacuate 10GB storage.
This is an order, not a request

90GB 10GB

❷ If someone requires space while storage is full, reclaim the storage of the person using the most storage.

❶ Everyone can get space whenever there is free storage

100GB
☺ ☺ ☺ ☺ ☺ ☺   



How to Share the iCloud Storage?

 An optimal scheme for (poor) people (i.e., Pushout)

Six members share iCloud storage

0GB 0GB 0GB 0GB

100GB

❷ If storage is full and someone needs space, remove the data of the person using the most storage.

I want 10GB

❶ Everyone can get space whenever there is free storage

Hey, evacuate 10GB storage.
This is an order, not a request

✓ Efficient ✓ Fair ✗ Simple

90GB 10GB100GB
☺ ☺ ☺ ☺ ☺ ☺   



Why the Optimal Scheme is not Simple

 Difficulty 1: Require extra memory bandwidth

◼ Unacceptable for traditional off-chip shared-memory switch
◼ Status quo: On-chip shared-memory switch significantly extends memory bandwidth

Packet Packet Packet Packet

Packet Packet Packet Packet

Packet Packet Packet Packet

Packet Packet Packet Packet

Packet BufferIngress side Egress side

Enqueue Dequeue

❶ Dequeue a packet (memory read)❷ Enqueue a packet (memory write)

Extra memory operation

Packet

Packet arrives
when buffer is full



Why the Optimal Scheme is not Simple

 Difficulty 2: Require complex enqueue operations

Packet

Packet Packet Packet Packet

Packet Packet Packet Packet

Packet Packet Packet Packet

Packet Packet Packet Packet

Ingress side Egress side

Enqueue Dequeue

❶ Pause the enqueue operations

❸ Notify the egress side to expel a packet 

❷ Add a buffer to store the packet

❹ Notify the ingress side to enqueue the packet 

Packet arrives
when buffer is full

Packet Buffer



Why the Optimal Scheme is not Simple

 Difficulty 3:  Monitoring the longest queue in real time

8-input maximum finder based on binary comparator tree

Area complexity: 𝑂(𝑘𝑁)

Time complexity: 𝑂(log2𝐾 × log2𝑁)

✓ Acceptable

✗ Unacceptable

Example

◆ 64 queues, 16-bit queue length → 7ns latency
◆ Queue length changes every 1ns



Occamy
A preemptive buffer management scheme

✓ Efficient:   (Almost) fully utilize the buffer

✓ Fair:         Quickly adjust the buffer allocation

✓ Simple:     Easy to be implemented in switch chip



Occamy

 Expels packets in a round-robin manner

 Proactively reserves a small fraction of free buffer

 Keeps admission and expulsion mutually independent

Overcomes the 3rd difficulty

Overcomes the 2nd difficulty



Occamy
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Occamy
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Occamy

A
d

m
is

s
io

n

Packet Buffer

D
e

q
u

e
u

e

Head Drop

Packet 

Read

Arbiter

Head-drop 

Selector

Output

Scheduler

Statistic

s

D
e

m
u

x

Packet

PDRX

PacketQueues

PD PD PD

PD PD PD

PD PD PD

A queue is organized as a linked list of PDs



Occamy
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Occamy
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Utilize off-the-shelf BM in commodity switch chips
◆ DT：Widely adopted in the commodity switch chip
◆ α=8：Achieve an efficiency of 88.9% in the worst case
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Occamy
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Occamy

 Head-drop selector: select a head-drop queue

1

> > > > > >

0

𝑇(𝑡)

0 1 1 0

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6

Round-robin Arbiter

>

0

𝑞7

>

0

𝑞8

Head-drop Queue Index

Queue length   >   Allocated buffer

Threshold given by DT

❶ Maintain all over-allocated queues with a bitmap

Comparators



Occamy

 Head-drop selector: select a head-drop queue

1

> > > > > >

0

𝑇(𝑡)

0 1 1 0

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6

Round-robin Arbiter

>

0

𝑞7

>

0

𝑞8

Head-drop Queue Index

Comparators

❷ Iterates over over-allocated queues

❶ Maintain all over-allocated queues with a bitmap

Round-robin arbiter: a common hardware component

in high-speed crossbar switches



Occamy
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Conflicts of Memory Read!

Read PD for head drop Read PD for TX

Don’t disturb normal packet forwarding!
Essential to guarantee line-rate forwarding.



Occamy
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The read requests from the head-drop selector
are blocked whenever the output scheduler
needs to fetch a packet



Occamy
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◆ Head-drop shares lots of operations with the normal TX
◆ Synthesize it into the existing packet dequeue pipelines

Performing head-drop



Occamy

Cell Data
Memory

Cell Pointer
Memory

① Read PD

Cycle 1 Cycle 2 Cycle 3 Cycle 4

② Dequeue PD

③Read Cell Ptr

④ Free Cell

⑤ Read Cell 

Data

③Read Cell Ptr

④ Free Cell

⑤ Read Cell 

Data

Free Prev. CellFree Prev. Cell

Read Prev. Cell Ptr Read Next Cell Ptr

Read Prev. Cell 

Data

Read Prev. Cell 

Data

Read Next PD
PD

Memory
Dequeue Next PD

① Read a PD from PD memory
② Dequeue the PD
③ Read cell pointer from cell pointer memory
④ Fee cell (by moving the cell pointer to the free cell ptr list)
⑤ Read cell data

TX pipeline



Occamy

Cell Data
Memory

Cell Pointer
Memory

① Read PD

Cycle 1 Cycle 2 Cycle 3 Cycle 4

② Dequeue PD

③Read Cell Ptr

④ Free Cell

⑤ Read Cell 

Data
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Data
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Read Prev. Cell Ptr Read Next Cell Ptr
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Read Next PD
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Dequeue Next PD

① Read a PD from PD memory
② Dequeue the PD
③ Read cell pointer from cell pointer memory
④ Fee cell (by moving the cell pointer to the free cell ptr list)
⑤ Read cell data

Head-drop pipeline



Occamy

Cell Data
Memory

Cell Pointer
Memory

① Read PD

Cycle 1 Cycle 2 Cycle 3 Cycle 4

② Dequeue PD

③Read Cell Ptr

④ Free Cell

⑤ Read Cell 

Data

③Read Cell Ptr

④ Free Cell

⑤ Read Cell 

Data

Free Prev. CellFree Prev. Cell

Read Prev. Cell Ptr Read Next Cell Ptr

Read Prev. Cell 

Data

Read Prev. Cell 

Data

Read Next PD
PD

Memory
Dequeue Next PD

① Read a PD from PD memory
② Dequeue the PD
③ Read cell pointer from cell pointer memory
④ Fee cell (by moving the cell pointer to the free cell ptr list)
⑤ Read cell data if TX

Synthesized pipeline



Implementations

 Verilog implementation of core components

 P4-based hardware prototype

 DPDK-based software prototype

 Ns-3-based Simulator

https://github.com/ants-xjtu/Occamy



Evaluations

FPGA cost by Vivado

◆<1300 LUTs and 60 Flip Flops

ASIC cost by Design Compiler

◆1.5ns timing

◆0.03mm2 area cost and 1mW power



Evaluations --- P4-based HW Prototype

Occamy can absorb 57% more bursty traffic than DT (α=4)



Evaluations --- DPDK-based HW Prototype

Occamy can reduce the average

query completion time by up to ∼55%

Occamy achieves similar performance to 

Pushout when facing buffer choking



Evaluations --- ns-3 simulations

Traditional DCN Traffic All-to-all Traffic All-reduce Traffic

Occamy significantly improves the query completion time with various traffic 

patterns



Conclusion

 This paper answers 3 questions:

◆What are the fundamental requirements of BMs with insufficient buffer and 
intense traffic bursts?

◆Answer: BM should be highly agile

◆What are the intrinsic limitations of current BMs in meeting the requirements 
in DCN?

◆ Answer: It is the non-preemptive nature that confines the agility of current BM

◆ Is it possible to break through these limitations with the recent advances on 
buffer architecture?

◆Answer: Yes. We design Occamy, a simple yet effective preemptive BM



Thank you!
https://github.com/ants-xjtu/Occamy
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