
Occamy
A Preemptive Buffer Management for

On-chip Shared-memory Switches
Danfeng Shan, Yunguang Li, Jinchao Ma, Zhenxing Zhang,

Zeyu Liang, Xinyu Wen, Hao Li, Wanchun Jiang, Nan Li, Fengyuan Ren

https://github.com/ants-xjtu/Occamy

https://github.com/ants-xjtu/Occamy
https://github.com/ants-xjtu/Occamy
https://github.com/ants-xjtu/Occamy

Switches and Buffers

 Switch Buffer
◆Short flows: Absorb transient bursts

◆ Long flows: Maintain high-throughput

[1] Zhang Q, Liu V, Zeng H, et al. High-resolution measurement of data center microbursts[C]//Proceedings of ACM IMC. 2017: 78-85.

[2] Bai W, Hu S, Chen K, et al. One more config is enough: Saving (DC) TCP for high-speed extremely shallow-buffered datacenters[J]. IEEE/ACM Transactions on Networking,

2020, 29(2): 489-502.

Microbursts encompass most congestion events[1] DCTCP requires ∼60-70% BDP buffering for 100% throughput[2]

Switches and Buffers

 Today’s DCN Switch: On-ship Shared-Memory

Broadcom Tomahawk 4 switch chip[1]

[1] https://docs.broadcom.com/docs/12398014

Globally shared on-chip packet buffer

Switches and Buffers

 Trends of Switch Buffer

SRAM scaling appears to have completely collapsed[2]Doubling the switching capacity every two years[1]

[1] https://www.broadcom.com/blog/driving-the-data-center-into-the-future

[2] https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram

https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://www.broadcom.com/blog/driving-the-data-center-into-the-future
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram

Switches and Buffers

 Trends of Switch Buffer

0.48 1.28 6.4 12.8 25.6
Switching Capacity (Tbps)

40

80

120

160

B
u
ff

er
S

iz
e

/
C

ap
ac

it
y

(µ
s) Trident+ (2010)

Trident2 (2012)

Tomahawk2 (2016)

Tomahawk3 (2017)
Tomahawk4 (2019)

1The switch buffer (relative to capacity) has been decreased by 4x

Buffer Management (BM)

 Buffer Management (BM): Allocate buffer across queues

 Goals of BM
◆ Fair: Don’t starve queues when facing dynamic traffic

◆Efficient: Don’t waste the scarce buffer for maximizing burst absorption

◆Simple: Easy to be implemented in high-speed switch chip

…

Packet Buffer

QueuesBM

Drop

Enqueue

Buffer Management (BM)

 Analogy: iCloud Storage Sharing

Six members share iCloud storage

Buffer Management (BM)

 Analogy: iCloud Storage Sharing

Six members share iCloud storage

I require 90GB
We don’t require any storage, for now.
But we may require 100GB in the future

How to Share the iCloud Storage?

 Scheme 1: Sufficient Reservation
◆Example BMs: Complete Partition, DT with a small α

Six members share iCloud storage

We are rich.
Let’s just buy 2TB storage.

Everyone gets 333GB.

90GB 0GB 0GB 0GB 0GB 0GB
☺ ☺ ☺ ☺ ☺ ☺

2TB

◼ Effective when buffer is sufficient
◼ Status quo: insufficient buffer

✓ Fair ✓ Simple ✗ Efficient

How to Share the iCloud Storage?

 Scheme 2: On-demand Allocation
◆Example BMs: Complete Sharing, DT with a large α

Six members share iCloud storage

We are poor and can only afford 100GB storage.
Let’s buy 100GB storage,

and dynamically share among members

1st year

90GB 0GB 0GB 0GB 0GB 0GB

100GB

☺ ☺ ☺ ☺ ☺ ☺

How to Share the iCloud Storage?

 Scheme 2: On-demand Allocation
◆Example BMs: Complete Sharing, DT with a large α

Six members share iCloud storage

Hey, I require 20GB storage now.
Can you give me 10GB?

2nd year

90GB 0GB 0GB 0GB 0GB

100GB

Fine. But you need to wait.
 I need to clean my storage.

0GB10GB
☺ ☺ ☺ ☺ ☺ 

How to Share the iCloud Storage?

 Scheme 2: On-demand Allocation
◆Example BMs: Complete Sharing, DT with a large α

Six members share iCloud storage

Too late.
My iPhone is lost and all photos are gone.

10 years later

80GB 10GB 0GB 0GB 0GB 0GB

100GB

I have cleaned the storage for you.

☺ ☺ ☺ ☺ ☺ 

The Buffer Choking Problem

High Priority Queue
（latency-sensitive traffic)

Low Priority Queue

Background
Traffic

Bursty
Traffic

High-priority traffic occupies
most bandwidth

Low-priority traffic occupies lots of buffer,
but draining slowly

High-priority traffic thirsts for buffer,
suffering from packet drops

The Buffer Choking Problem

0 2 4 6 8 10 12 14
Query Size (MB)

0

10

20

30

40

50

A
v
g
.

Q
C

T
(m

s)

w/o low-priority traffic

w/ low-priority traffic

0 2 4 6 8 10 12 14
Query Size (MB)

0

50

100

150

200

p
9
9

Q
C

T
(m

s)

w/o low-priority traffic

w/ low-priority traffic

Experiments on Huawei CE6865 switch

Average Query Completion Time 99th Query Completion Time

Buffer choking can significantly degrade the transmission performance

degraded by up to 8× degraded by up to 90×

How to Share the iCloud Storage?

 Scheme 2: On-demand Allocation
◆Example BMs: Complete Sharing, DT with a large α

Six members share iCloud storage

We are poor and can only afford 100GB
Let’s buy 100GB storage,

and dynamically share among members

90GB 0GB 0GB 0GB 0GB 0GB

100GB

◼ Effective with very smooth traffic
◼ Status quo: highly bursty traffic (e.g., 1000:1 incast)

✓ Efficient ✓ Simple ✗ Fair

☺ ☺ ☺ ☺ ☺ 

How to Share the iCloud Storage?

Six members share iCloud storage

90GB 0GB 0GB 0GB 0GB 0GB

100GB

We are poor and can only afford 100GB
Let’s buy 100GB storage,

and dynamically share among members

 Why on-demand allocation is not fair?
◆Non-preemption: Passively wait for others to naturally free the space

How to Share the iCloud Storage?

 An optimal scheme for (poor) people (i.e., Pushout)

Six members share iCloud storage

90GB 0GB 0GB 0GB 0GB 0GB

100GB

I want another 10GB It’s OK!

❶ Everyone can get space whenever there is free storage

100GB
☺ ☺ ☺ ☺ ☺ ☺

How to Share the iCloud Storage?

 An optimal scheme for (poor) people (i.e., Pushout)

Six members share iCloud storage

100GB 0GB 0GB 0GB 0GB 0GB

100GB

I want 10GB
Hey, evacuate 10GB storage.
This is an order, not a request

❷ If someone requires space while storage is full, reclaim the storage of the person using the most storage.

❶ Everyone can get space whenever there is free storage

How to Share the iCloud Storage?

 An optimal scheme for (poor) people (i.e., Pushout)

Six members share iCloud storage

100GB 0GB 0GB 0GB 0GB 0GB

100GB

I want 10GB
Hey, evacuate 10GB storage.
This is an order, not a request

90GB 10GB

❷ If someone requires space while storage is full, reclaim the storage of the person using the most storage.

❶ Everyone can get space whenever there is free storage

100GB
☺ ☺ ☺ ☺ ☺ ☺

How to Share the iCloud Storage?

 An optimal scheme for (poor) people (i.e., Pushout)

Six members share iCloud storage

0GB 0GB 0GB 0GB

100GB

❷ If storage is full and someone needs space, remove the data of the person using the most storage.

I want 10GB

❶ Everyone can get space whenever there is free storage

Hey, evacuate 10GB storage.
This is an order, not a request

✓ Efficient ✓ Fair ✗ Simple

90GB 10GB100GB
☺ ☺ ☺ ☺ ☺ ☺

Why the Optimal Scheme is not Simple

 Difficulty 1: Require extra memory bandwidth

◼ Unacceptable for traditional off-chip shared-memory switch
◼ Status quo: On-chip shared-memory switch significantly extends memory bandwidth

Packet Packet Packet Packet

Packet Packet Packet Packet

Packet Packet Packet Packet

Packet Packet Packet Packet

Packet BufferIngress side Egress side

Enqueue Dequeue

❶ Dequeue a packet (memory read)❷ Enqueue a packet (memory write)

Extra memory operation

Packet

Packet arrives
when buffer is full

Why the Optimal Scheme is not Simple

 Difficulty 2: Require complex enqueue operations

Packet

Packet Packet Packet Packet

Packet Packet Packet Packet

Packet Packet Packet Packet

Packet Packet Packet Packet

Ingress side Egress side

Enqueue Dequeue

❶ Pause the enqueue operations

❸ Notify the egress side to expel a packet

❷ Add a buffer to store the packet

❹ Notify the ingress side to enqueue the packet

Packet arrives
when buffer is full

Packet Buffer

Why the Optimal Scheme is not Simple

 Difficulty 3: Monitoring the longest queue in real time

8-input maximum finder based on binary comparator tree

Area complexity: 𝑂(𝑘𝑁)

Time complexity: 𝑂(log2𝐾 × log2𝑁)

✓ Acceptable

✗ Unacceptable

Example

◆ 64 queues, 16-bit queue length → 7ns latency
◆ Queue length changes every 1ns

Occamy
A preemptive buffer management scheme

✓ Efficient: (Almost) fully utilize the buffer

✓ Fair: Quickly adjust the buffer allocation

✓ Simple: Easy to be implemented in switch chip

Occamy

 Expels packets in a round-robin manner

 Proactively reserves a small fraction of free buffer

 Keeps admission and expulsion mutually independent

Overcomes the 3rd difficulty

Overcomes the 2nd difficulty

Occamy

A
d

m
is

s
io

n

Packet Buffer

D
e

q
u

e
u

e

Head Drop

Packet

Read

PD PD PD

PD PD PD

PD PD PD

Arbiter

Head-drop

Selector

Output

Scheduler

Statistic

s

D
e

m
u

x

Packet

PDRX
TX

Packet

PD

Update

Queues

Head-drop or Send

PD

Occamy

A
d

m
is

s
io

n

Packet Buffer

D
e

q
u

e
u

e

Head Drop

Packet

Read

PD PD PD

PD PD PD

PD PD PD

Arbiter

Head-drop

Selector

Output

Scheduler

Statistic

s

D
e

m
u

x

Packet

PDRX

PacketPacket Data

Packet Descriptor
(addr of packet data, etc.)

Occamy

A
d

m
is

s
io

n

Packet Buffer

D
e

q
u

e
u

e

Head Drop

Packet

Read

Arbiter

Head-drop

Selector

Output

Scheduler

Statistic

s

D
e

m
u

x

Packet

PDRX

PacketQueues

PD PD PD

PD PD PD

PD PD PD

A queue is organized as a linked list of PDs

Occamy

A
d

m
is

s
io

n

Packet Buffer

D
e

q
u

e
u

e

Head Drop

Packet

Read

PD PD PD

PD PD PD

PD PD PD

Arbiter

Head-drop

Selector

Output

Scheduler

Statistic

s

D
e

m
u

x
PDRX

TX

PD

Update

Queues

Head-drop or Send

PD

Packet Admission

Packet Expulsion

Occamy

A
d

m
is

s
io

n

Packet Buffer

D
e

q
u

e
u

e

Head Drop

Packet

Read

PD PD PD

PD PD PD

PD PD PD

Arbiter

Head-drop

Selector

Output

Scheduler

Statistic

s

D
e

m
u

x
PDRX

TX

PD

Queues

PD

Utilize off-the-shelf BM in commodity switch chips
◆ DT：Widely adopted in the commodity switch chip
◆ α=8：Achieve an efficiency of 88.9% in the worst case

Admission

Occamy

A
d

m
is

s
io

n

Packet Buffer

D
e

q
u

e
u

e

Head Drop

Packet

Read

PD PD PD

PD PD PD

PD PD PD

Arbiter

Head-drop

Selector

Output

Scheduler

Statistic

s

D
e

m
u

x
PDRX

TX

PD PD

3 components
① Head-drop selector: Select a head-drop queue
② Arbiter: Resolving the conflicts of memory read
③ Head-drop executor: Performing the head-drop action

Explusion

❶

❷

❸

Occamy

 Head-drop selector: select a head-drop queue

1

> > > > > >

0

𝑇(𝑡)

0 1 1 0

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6

Round-robin Arbiter

>

0

𝑞7

>

0

𝑞8

Head-drop Queue Index

Queue length > Allocated buffer

Threshold given by DT

❶ Maintain all over-allocated queues with a bitmap

Comparators

Occamy

 Head-drop selector: select a head-drop queue

1

> > > > > >

0

𝑇(𝑡)

0 1 1 0

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6

Round-robin Arbiter

>

0

𝑞7

>

0

𝑞8

Head-drop Queue Index

Comparators

❷ Iterates over over-allocated queues

❶ Maintain all over-allocated queues with a bitmap

Round-robin arbiter: a common hardware component

in high-speed crossbar switches

Occamy

A
d

m
is

s
io

n

Packet Buffer

D
e

q
u

e
u

e

Head Drop

Packet

Read

PD PD PD

PD PD PD

PD PD PD

Arbiter

Head-drop

Selector

Output

Scheduler

Statistic

s

D
e

m
u

x
PDRX

TX

PD

Update

Queues

Head-drop or Send

PD

Conflicts of Memory Read!

Read PD for head drop Read PD for TX

Don’t disturb normal packet forwarding!
Essential to guarantee line-rate forwarding.

Occamy

A
d

m
is

s
io

n

Packet Buffer

D
e

q
u

e
u

e

Head Drop

Packet

Read

PD PD PD

PD PD PD

PD PD PD

Arbiter

Head-drop

Selector

Output

Scheduler

Statistic

s

D
e

m
u

x
PDRX

TX

PD

Update

Queues

Head-drop or Send

PD

Fixed-priority Arbiter

The read requests from the head-drop selector
are blocked whenever the output scheduler
needs to fetch a packet

Occamy

A
d

m
is

s
io

n

Packet Buffer

D
e

q
u

e
u

e

Head Drop

Packet

Read

PD PD PD

PD PD PD

PD PD PD

Arbiter

Head-drop

Selector

Output

Scheduler

Statistic

s

D
e

m
u

x
PDRX

TX

PD

Update

Queues

Head-drop or Send

PD

◆ Head-drop shares lots of operations with the normal TX
◆ Synthesize it into the existing packet dequeue pipelines

Performing head-drop

Occamy

Cell Data
Memory

Cell Pointer
Memory

① Read PD

Cycle 1 Cycle 2 Cycle 3 Cycle 4

② Dequeue PD

③Read Cell Ptr

④ Free Cell

⑤ Read Cell

Data

③Read Cell Ptr

④ Free Cell

⑤ Read Cell

Data

Free Prev. CellFree Prev. Cell

Read Prev. Cell Ptr Read Next Cell Ptr

Read Prev. Cell

Data

Read Prev. Cell

Data

Read Next PD
PD

Memory
Dequeue Next PD

① Read a PD from PD memory
② Dequeue the PD
③ Read cell pointer from cell pointer memory
④ Fee cell (by moving the cell pointer to the free cell ptr list)
⑤ Read cell data

TX pipeline

Occamy

Cell Data
Memory

Cell Pointer
Memory

① Read PD

Cycle 1 Cycle 2 Cycle 3 Cycle 4

② Dequeue PD

③Read Cell Ptr

④ Free Cell

⑤ Read Cell

Data

③Read Cell Ptr

④ Free Cell

⑤ Read Cell

Data

Free Prev. CellFree Prev. Cell

Read Prev. Cell Ptr Read Next Cell Ptr

Read Prev. Cell

Data

Read Prev. Cell

Data

Read Next PD
PD

Memory
Dequeue Next PD

① Read a PD from PD memory
② Dequeue the PD
③ Read cell pointer from cell pointer memory
④ Fee cell (by moving the cell pointer to the free cell ptr list)
⑤ Read cell data

Head-drop pipeline

Occamy

Cell Data
Memory

Cell Pointer
Memory

① Read PD

Cycle 1 Cycle 2 Cycle 3 Cycle 4

② Dequeue PD

③Read Cell Ptr

④ Free Cell

⑤ Read Cell

Data

③Read Cell Ptr

④ Free Cell

⑤ Read Cell

Data

Free Prev. CellFree Prev. Cell

Read Prev. Cell Ptr Read Next Cell Ptr

Read Prev. Cell

Data

Read Prev. Cell

Data

Read Next PD
PD

Memory
Dequeue Next PD

① Read a PD from PD memory
② Dequeue the PD
③ Read cell pointer from cell pointer memory
④ Fee cell (by moving the cell pointer to the free cell ptr list)
⑤ Read cell data if TX

Synthesized pipeline

Implementations

 Verilog implementation of core components

 P4-based hardware prototype

 DPDK-based software prototype

 Ns-3-based Simulator

https://github.com/ants-xjtu/Occamy

Evaluations

FPGA cost by Vivado

◆<1300 LUTs and 60 Flip Flops

ASIC cost by Design Compiler

◆1.5ns timing

◆0.03mm2 area cost and 1mW power

Evaluations --- P4-based HW Prototype

Occamy can absorb 57% more bursty traffic than DT (α=4)

Evaluations --- DPDK-based HW Prototype

Occamy can reduce the average

query completion time by up to ∼55%

Occamy achieves similar performance to

Pushout when facing buffer choking

Evaluations --- ns-3 simulations

Traditional DCN Traffic All-to-all Traffic All-reduce Traffic

Occamy significantly improves the query completion time with various traffic

patterns

Conclusion

 This paper answers 3 questions:

◆What are the fundamental requirements of BMs with insufficient buffer and
intense traffic bursts?

◆Answer: BM should be highly agile

◆What are the intrinsic limitations of current BMs in meeting the requirements
in DCN?

◆ Answer: It is the non-preemptive nature that confines the agility of current BM

◆ Is it possible to break through these limitations with the recent advances on
buffer architecture?

◆Answer: Yes. We design Occamy, a simple yet effective preemptive BM

Thank you!
https://github.com/ants-xjtu/Occamy

	Slide 1: Occamy A Preemptive Buffer Management for On-chip Shared-memory Switches
	Slide 2: Switches and Buffers
	Slide 3: Switches and Buffers
	Slide 4: Switches and Buffers
	Slide 5: Switches and Buffers
	Slide 6: Buffer Management (BM)
	Slide 7: Buffer Management (BM)
	Slide 8: Buffer Management (BM)
	Slide 9: How to Share the iCloud Storage?
	Slide 10: How to Share the iCloud Storage?
	Slide 11: How to Share the iCloud Storage?
	Slide 12
	Slide 13: How to Share the iCloud Storage?
	Slide 14: The Buffer Choking Problem
	Slide 15: The Buffer Choking Problem
	Slide 16: How to Share the iCloud Storage?
	Slide 17: How to Share the iCloud Storage?
	Slide 18: How to Share the iCloud Storage?
	Slide 19: How to Share the iCloud Storage?
	Slide 20: How to Share the iCloud Storage?
	Slide 21: How to Share the iCloud Storage?
	Slide 22: Why the Optimal Scheme is not Simple
	Slide 23: Why the Optimal Scheme is not Simple
	Slide 24: Why the Optimal Scheme is not Simple
	Slide 25
	Slide 26: Occamy
	Slide 27: Occamy
	Slide 28: Occamy
	Slide 29: Occamy
	Slide 30: Occamy
	Slide 31: Occamy
	Slide 32: Occamy
	Slide 33: Occamy
	Slide 34: Occamy
	Slide 35: Occamy
	Slide 36: Occamy
	Slide 37: Occamy
	Slide 38: Occamy
	Slide 39: Occamy
	Slide 40: Occamy
	Slide 41: Implementations
	Slide 42: Evaluations
	Slide 43: Evaluations --- P4-based HW Prototype
	Slide 44: Evaluations --- DPDK-based HW Prototype
	Slide 45: Evaluations --- ns-3 simulations
	Slide 46: Conclusion
	Slide 47: Thank you!

