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Switches and Buffers

0 Switch Buffer

€ Short flows: Absorb transient bursts
€ Long flows: Maintain high-throughput
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Microbursts encompass most congestion events!!l DCTCP requires ~60-70% BDP buffering for 100% throughput?

[1] Zhang Q, Liu V, Zeng H, et al. High-resolution measurement of data center microbursts[C]//Proceedings of ACM IMC. 2017: 78-85.
[2] Bai W, Hu S, Chen K, et al. One more config is enough: Saving (DC) TCP for high-speed extremely shallow-buffered datacenters[J]. IEEE/ACM Transactions on Networking,
2020, 29(2): 489-502.



Switches and Buffers

O Today’'s DCN Switch: On-ship Shared-Memory
Globally shared on-chip packet buffer
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Switches and Buffers

0 Trends of Switch Buffer
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Doubling the switching capacity every two years!'! SRAM scaling appears to have completely collapsed!?]
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[1] https://www.broadcom.com/blog/driving-the-data-center-into-the-future
[2] https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram
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Switches and Buffers

0 Trends of Switch Buffer
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The switch buffer (relative to capacity) has been decreased by 4x



Buffer Management (BM)

O Buffer Management (BM): Allocate buffer across queues

Enqueue
9 HEREEEEEEEEEEER
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B —| BMm Queues

D;op Packet Buffer

O Goals of BM
& Fair: Don’t starve queues when facing dynamic traffic
& Efficient: Don’t waste the scarce buffer for maximizing burst absorption
€ Simple: Easy to be implemented in high-speed switch chip



Buffer Management (BM)

O Analogy: iCloud Storage Sharing

Six members share iCloud storage




Buffer Management (BM)

O Analogy: iCloud Storage Sharing

Six members share iCloud storage

I require 90GB , :
We don’t require any storage, for now.

But we may require 100GB in the future




How to Share the iCloud Storage?

0 Scheme 1: Sufficient Reservation
€ Example BMs: Complete Partition, DT with a small a

We are rich.
Let’s just buy 2TB storage.

Everyone gets 333GB.

Six members share iCloud storage

0GB 0GB 0GB 0GB 0GB 0GB

v Fair v Simple X Efficient

B Effective when buffer is sufficient
B Status quo: insufficient buffer




How to Share the iCloud Storage?

0 Scheme 2: On-demand Allocation
€ Example BMs: Complete Sharing, DT with a large a

We are poor and can only afford 100GB storage.
Let's buy 100GB storage,

and dynamically share among members

Six members share iCloud storage

0GB 0GB 0GB 0GB 0GB 0GB
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How to Share the iCloud Storage?

0 Scheme 2: On-demand Allocation
€ Example BMs: Complete Sharing, DT with a large a

: Hey, I require 20GB storage now.
Fine. But you need to wait. y,1Teq g

Can you give me 10GB?
I need to clean my storage. yeu s

Six members share iCloud s

90GB 0GB 0GB 0GB 0GB 10GB

© © v © O O

2nd year
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How to Share the iCloud Storage?

0 Scheme 2: On-demand Allocation
€ Example BMs: Complete Sharing, DT with a large a

I have cleaned the storage for you. Too late.

My iPhone is lost and all photos are gone.

ix members share iClou®

80GB 10GB 0GB 0GB 0GB 0GB

© © v © O 6

10 years later



The Buffer Choking Problem

High-priority traffic thirsts for buffer,

suffering from packet drops

High-priority traffic occupies
(latency-sensitive traffic) most bandwidth

Bursty

- IIIIIII
Background - . '

Traffic Low-priority traffic occupies lots of buffer,

but draining slowly

High Priority Queue

Low Priority Queue



The Buffer Choking Problem

Experiments on Huawei CE6865 switch
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Buffer choking can significantly degrade the transmission performance



How to Share the iCloud Storage?

0 Scheme 2: On-demand Allocation
€ Example BMs: Complete Sharing, DT with a large a

We are poor and can only afford 100GB
Let’s buy 100GB storage,

and dynamically share among members

Six members share iCloud storage

0GB 0GB 0GB 0GB 0GB 0GB

v Efficient v Simple X Fair

B Effective with very smooth traffic
B Status quo: highly bursty traffic (e.g., 1000:1 incast)




How to Share the iICloud Storage?

O Why on-demand allocation is not fair?
€ Non-preemption: Passively wait for others to naturally free the space



How to Share the iCloud Storage?

O An optimal scheme for (poor) people (i.e., Pushout)

I want another 10GB It's OK!

Sixgembers share iCloud storage

100GB 0GB 0GB 0GB 0GB 0GB

© © v © O O

€ Everyone can get space whenever there is free storage




How to Share the iCloud Storage?

O An optimal scheme for (poor) people (i.e., Pushout)

Hey, evacuate 10GB storage. I want 10GB

This is an order, not a request

embers share iCloud storg®e

100GB 0GB 0GB 0GB 0GB 0GB

Si

€@ Everyone can get space whenever there is free storage

@© If someone requires space while storage is full, reclaim the storage of the person using the most storage.




How to Share the iCloud Storage?

O An optimal scheme for (poor) people (i.e., Pushout)

Hey, evacuate 10GB storage. I want 10GB

This is an order, not a request

embers share iCloud storg®e

100GB 0GB 0GB 0GB 0GB 10GB
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€@ Everyone can get space whenever there is free storage

@© If someone requires space while storage is full, reclaim the storage of the person using the most storage.




How to Share the iCloud Storage?

O An optimal scheme for (poor) people (i.e., Pushout)

Hey, evacuate 10GB storage. I want 10GB

This is an order, not a request

embers share iCloud storg®e

100GB 0GB 0GB 0GB 0GB 10GB

© © v © O O

€@ Everyone can get space whenever there is free storage

@ If storage is full and someone needs space, remove the data of the person using the most storage.
v' Efficient v Fair X Simple




Why the Optimal Scheme is not Simple

O Difficulty 1: Require extra memory bandwidth

Extra memory operation

Packet Packet Packet Packet

Packet Packet Packet Packet

|
® Engueue a packet (memory write) €@ Dequeue a packet (memory read)
Ingress side: Packet Buffer | Egress side
when buffer is full : :
= =
Enqueue o . Dequeue

B Unacceptable for traditional off-chip shared-memory switch
B Status quo: On-chip shared-memory switch significantly extends memory bandwidth




Why the Optimal Scheme is not Simple

O Difficulty 2: Require complex enqueue operations

€ Notify the egress side to expel a packet

Packet Packet Packet Packet

€@ Pause the enqueue operations
© Add a buffer to store the packet

I

Packet Packet Packet Packet

Ingresz| sidei Packet Buffer ; EgresL side

when buffer is full i i
Enqueue ! | Dequeue

il Packet || Packet | Packet § Packet §

fl Packet | Packet § Packet | Packet J§

O Notify the ingress side to enqueue the packet



Why the Optimal Scheme is not Simple

O Difficulty 3: Monitoring the longest queue in real time

Area complexity: O(kN) v Acceptable

Time complexity: O(log,K % log, N) X Unacceptable

qi q2 q3 q4 qs 96 q7 qs
CMP & MUX CMP & MUX CMP & MUX CMP & MUX
| I I | I I |
maX{(h, (JZ}V VmaX{QB, CI4} max{q5, de }V Vmax{q% qg}
CMP & MUX CMP & MUX
| ]
ab maX{Ch, q2, 43, 614}v vmaX{CIS, e, 47, CIS}
' * CMP & MUX
CMP — T
7 MUX
a> max{q1, gz, - - -, qs}
max{a, b}

Example

€ 64 queues, 16-bit queue length - 7ns latency
€ Queue length changes every 1ns

8-input maximum finder based on binary comparator tree




Occamy

A preemptive buffer management scheme

v' Efficient: (Almost) fully utilize the buffer
v’ Fair: Quickly adjust the buffer allocation
v Simple: Easy to be implemented in switch chip




Occamy

O Expels packets in a round-robin manner— Overcomes the 3 difficulty

O Proactively reserves a small fraction of free buffer

> Overcomes the 2" difficulty

O Keeps admission and expulsion mutually independent



Occamy

Head-drop Output
Selector Scheduler
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Packet
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Packet Buffer



Occamy

Packet Descriptor
(addr of packet data, etc.)

Packet ' Packet Data YPacket




Occamy

A queue is organized as a linked list of PDs

_PD oy PD iy PD
=il PD | PD [ PD B
PD oy PD joy PD B

Packet Queues YPacket

RX—>
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Occamy

— Admission

Utilize off-the-shelf BM in commodity switch chips
€ DT: Widely adopted in the commodity switch chip
€ 0=8: Achieve an efficiency of 88.9% in the worst case
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Occamy

Head-drop Output
I Selector Scheduler
|
|

— Explusion : [o-====—=——————————=--

3 components

(@ Head-drop selector: Select a head-drop queue

2 Arbiter: Resolving the conflicts of memory read

@ Head-drop executor: Performing the head-drop action

Packet

Packet Buffer




Occamy

0 Head-drop selector: select a head-drop queue

Threshold given by DT \
91 42 43 44 (s (e Ci7 ds

I A e S |

C t
T(t)y—\>/\>/\>/> /—W\M le@ > @:ated buffe

I 1{0]0 ;1,110,100 Iﬂ Maintain alllover-allocated queueslwith a bitmap
v \ l A l v l

\ Round-robin Arbiter /
|

Head-drop Queue Index




Occamy

0 Head-drop selector: select a head-drop queue

71 92 93 44 qs g q
ll 12 13 l ls l6 Ci7 l8C0mparators
T(t)_’\> H>F’\>H> >\ >\ >\ >
0 1 10
Voo |

\ Round-robm Arbiter / @ ltcrates over over-allocated queues

Head-drop Queue Index

Round-robin arbiter;: a common hardware component
in high-speed crossbar switches




Occamy

Head-drop Output
Selector Scheduler

Read PD for head drop

Read PD for TX

Conflicts of Memory Read!

Don’t disturb normal packet forwarding!
Essential to guarantee line-rate forwarding.




Occamy

Output
. Scheduler
I Fixed-priority Arbiter

The read requests from the head-drop selector
are blocked whenever the output scheduler
needs to fetch a packet




Occamy

— Performing head-drop

€ Head-drop shares lots of operations with the normal TX
€ Synthesize it into the existing packet dequeue pipelines

Packet Buffer




Occamy

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cell Pointer @Read Cell Ptr [ @Read Cell Ptr
Memory @ Free Cell | @ Free Cell

Read Prev. Cell Read Prev. Cell ® Read Cell ® Read Cell
Data Data Data Data

Cell Data
Memory

— TX pipeline

@ Read a PD from PD memory

@ Dequeue the PD

@ Read cell pointer from cell pointer memory

@ Fee cell (by moving the cell pointer to the free cell ptr list)
® Read cell data




Occamy

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cell Pointer @Read Cell Ptr [ @Read Cell Ptr
Memory @ Free Cell | @ Free Cell

— Head-drop pipeline

@ Read a PD from PD memory

@ Dequeue the PD

@ Read cell pointer from cell pointer memory

@ Fee cell (by moving the cell pointer to the free cell ptr list)

B Readcell-data




Occamy

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cell Pointer @Read Cell Ptr [ @Read Cell Ptr
Memory @ Free Cell | @ Free Cell

Read Prev. Cell Read Prev. Cell
Data Data

— Synthesized pipeline

Cell Data
Memory

@ Read a PD from PD memory

2 Dequeue the PD

@ Read cell pointer from cell pointer memory

@ Fee cell (by moving the cell pointer to the free cell ptr list)
® Read cell data if TX




Implementations

O Verilog implementation of core components

0 P4-based hardware prototype

O DPDK-based software prototype

[0 Ns-3-based Simulator

https://github.com/ants-xjtu/Occamy




Evaluations

FPGA Cost ASIC Cost
Module LUTs Flip Timing Area = Power
Flops (ns) (mm?) (mW)
Selector 1262 47 1.49 0.023 0.895
Arbiter 3 0 0.17 2.3e-5 0.003
Executor 47 7 0.38 7.3e-4 0.044
FPGA cost by Vivado ASIC cost by Design Compiler

€ <1300 LUTs and 60 Flip Floy

DS

€ 1.5ns timing
€ 0.03mm? area cost and 1TmW power




Evaluations -- ps-based Hw Prototype
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Occamy can absorb 57% more bursty traffic than DT (a=4)



Avg. QCT (ms)

EvaluatiOnS --- DPDK-based HW Prototype
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Occamy can reduce the average
query completion time by up to ~55%
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Occamy achieves similar performance to
Pushout when facing buffer choking
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Evaluations --ns-3 simulations
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Traditional DCN Traffic All-to-all Traffic All-reduce Traffic

Occamy significantly improves the query completion time with various traffic
patterns



Conclusion

O This paper answers 3 questions:

€ What are the fundamental requirements of BMs with insufficient buffer and
intense traffic bursts?

€ Answer: BM should be highly agile

€ What are the intrinsic limitations of current BMs in meeting the requirements
in DCN?

€ Answer: It is the non-preemptive nature that confines the agility of current BM

@ |s it possible to break through these limitations with the recent advances on
buffer architecture?

& Answer: Yes. We design Occamy, a simple yet effective preemptive BM




Thank you!

https://github.com/ants-xjtu/Occamy
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